
Exploratory Studies of Ab Initio Protein Structure
Prediction: Multiple Copy Simulated Annealing, AMBER
Energy Functions, and a Generalized Born/Solvent
Accessibility Solvation Model
Yongxing Liu and D. L. Beveridge*
Chemistry Department and Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut

ABSTRACT A theoretical and computational
approach to ab initio structure prediction for
polypeptides in water is described and applied to
selected amino acid sequences for testing and pre-
liminary validation. The method builds systemati-
cally on the extensive efforts applied to parameter-
ization of molecular dynamics (MD) force fields,
employs an empirically well-validated continuum
dielectric model for solvation, and an eminently
parallelizable approach to conformational search.
The effective free energy of polypeptide chains is
estimated from AMBER united atom potential func-
tions, with internal degrees of freedom for both
backbone and amino acid side chains explicitly
treated. The hydration free energy of each structure
is determined using the Generalized Born/Solvent
Accessibility (GBSA) method, modified and reparam-
eterized to include atom types consistent with the
AMBER force field. The conformational search pro-
cedure employs a multiple copy, Monte Carlo simu-
lated annealing (MCSA) protocol in full torsion
angle space, applied iteratively on sets of structures
of progressively lower free energy until a prediction
of a structure with lowest effective free energy is
obtained. Calibration tests for the effective energy
function and search algorithm are performed on the
alanine dipeptide, selected protein crystal struc-
tures, and united atom decoys on barnase, crambin,
and six examples from the Rosetta set. Specific
demonstration cases of the method are provided for
the 8-mer sequence of Ala residues, a 12-residue
peptide with longer side chains QLLKKLLQQLKQ, a
de novo designed 16 residue peptide of sequence
(AAQAA)3Y, a 15-residue sequence with a b sheet
motif, GEWTWDATKTFTVTE, and a 36 residue small
protein, Villin headpiece. The Ala 8-mer readily
formed an a-helix. An a-helix structure was pre-
dicted for the 16-mer, consistent with observed
results from IR and CD spectroscopy and with the
pattern in c/f angles of known protein structures.
The predicted structure for the 12-mer, composed of
a mix of helix and less regular elements of second-
ary structure, lies 2.65 Å RMS from the observed
crystal structure. Structure prediction for the 8-mer
b-motif resulted in form 4.50 Å RMS from the crystal
geometry. For Villin, the predicted native form is

very close to the crystal structure, RMS values of 3.5
Å (including sidechains), and 1.01 Å (main chain
only). The methodology permits a detailed analysis
of the molecular forces which dominate various
segments of the predicted folding trajectory. Analy-
sis of the results in terms of internal torsional,
electrostatic and van der Waals and the electro-
static and non-electrostatic contributions to hydra-
tion, including the hydrophobic effect, is presented.
Proteins 2002;46:128–146. © 2001 Wiley-Liss, Inc.

INTRODUCTION

Anfinsen’s experiment1 on the reversible denaturation
of ribonuclease demonstrated that the tertiary structure of
proteins in solution may be determined by the amino acid
sequence, and extensive subsequent experiments have
demonstrated thermodynamic reversibility for many small,
single domain proteins2 and a number of more complex
cases (for a recent survey and discussion see Dill3). These
results gave rise to the idea known today as the “thermody-
namic hypothesis,” i.e., that the native form of a protein
corresponds to global minimum on the conformational free
energy surface. This, in turn, implies that a purely theoreti-
cal/computational approach to protein structure predic-
tion from amino acid sequence should be feasible, at least
in principle. In practice, the difficulty of determining
accurate energy functions, the essentially rugged charac-
ter of the free energy landscape, and the dimensionality of
the configuration space of a polypeptide in solution, makes
ab initio prediction of protein structure from sequence a
very challenging problem. The field of ab initio structure
prediction has spawned a large literature (for a recent
review see Osguthorpe4), and is featured prominently in
the CASP series of blind prediction contests designed to
objectively document progress in protein structure predic-
tion by various methods.5

A problem at the opposite end of the computational
spectrum is the dynamics of proteins in the vicinity of a
known equilibrium structural form (such as that obtained
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from crystallography). This problem has been treated
successfully via molecular dynamics (MD) simulation based
on all-atom empirical energy functions and Newtonian
equations of motion.6,7 Recent initiatives in this area have
produced considerable refinements in MD energy func-
tions.8–10 MD based on these force fields has been used
effectively in the investigation of protein unfolding path-
ways in solution.11 The longest MD on polypeptides in
water are the 50 ns trajectory on a b-heptapeptide by
Daura et al.12 and a 1.2 microsecond trajectory on Villin13

(see also Lee et al.14). However, protein structure predic-
tion directly from MD starting from a denatured form is
not immediately feasible, due to (1) the limited time scale
(approximately nanoseconds) currently accessible to this
technique and (2) the general inability of MD sampling to
escape from metastable local minima. The problem is only
compounded by the need to include solvation, which
increases the degrees of freedom that must be treated in a
given calculation. The results of Duan et al.13 on villin
provide a critical demonstration case of the problem with
MD folding. Lee et al.14 have used a scoring function on
Villin MD structures with some success at discriminating
the native form.

The scoring function in ab initio protein structure predic-
tion is an “effective” free energy, i.e., effective in the sense
that some degrees of freedom are by necessity integrated
out.15,16 The use of MD potentials in protein structure
prediction schemes was discussed at the 1998 CASP3
meeting5 as a refinement tool, applied mainly to predic-
tions from knowledge based methods with the hope of
further improvements. Early reports on this strategy
(“introducing the physics”) did not show dramatic success.
However, solvent effects were either not included explic-
itly in the models, or not estimated accurately enough.
Since it seems reasonable for polypeptide and protein
structure prediction schemes to build systematically on
the considerable work invested in the general formulation
and extensive parameterization efforts involved in develop-
ing MD force fields, we have proceeded to explore this
approach, including solvent in the model. In this project,
we explore the feasibility of transferring the energy func-
tions designed for protein MD simulations over to protein
structure prediction, treating the effective free energy of
hydration using Generalized Born (GB) theory for electro-
statics and solvent accessibility (SA) calculations for non-
electrostatic components. GBSA calculations17 have proved
to be quite accurate approximations to more rigorous
theoretical methods and agree well with observed val-
ues.18–21 Combined, the MD energy functions for the
internal energy and the GBSA method for solvation pro-
vide a well-defined effective free energy function for scor-
ing the relative stability of polypeptide chain conforma-
tions in water, and a possibly viable point of departure for
systematic studies of polypeptide structure (where appli-
cable) and protein structure prediction.

To make ab initio protein structure prediction tractable,
one requires a search engine that is rapid but not vulner-
able to getting trapped in the rugged features of the
configurational free energy surface. In this study, in-

creased speed (compared with MD), is obtained by reduc-
ing the degrees of freedom in the prediction scheme to
torsional motions. We treat the sampling problem by a
multiple copy Monte Carlo Metropolis simulated anneal-
ing (MCSA) approach,22 implemented here in a iterative
protocol in which progressively lower free energy struc-
tures are periodically culled and form the basis for succes-
sive refinements. This computational strategy takes advan-
tage of the “free energy funnels” by which proteins in
solution are thought to overcome the Levinthal para-
dox.23–25 Examination of snapshots of intermediary struc-
tures along the prediction trajectory can be used to deter-
mine the relative importance of factors such as hydrophobic
collapse and helix nucleation. At a more detailed level,
determination of the relative contributions from internal
torsional, electrostatic and van der Waals energies and the
electrostatic and non-electrostatic contributions to hydra-
tion, (including the hydrophobic effect) forms a basis for
assessment of relative importance of diverse chemical
forces in structure prediction trajectories and folding
processes.

Subsequent to CASP3, Simmerling et al.26 demon-
strated preliminary success with MD refinement of
knowledge based structure predictions and a molecular
mechanics/Poisson Boltzmann (MMPB) scoring func-
tion. In studies more closely related to those described
herein, several groups have been pursuing protein struc-
ture predictions using MD energy functions and implicit
solvent models, each with a unique and independent
implementation.27,28 Our particular emphasis in the
present project is on a fully ab initio approach, wherein
the only input data is the amino acid sequence of the
polypeptide with no knowledge based information such
as helix propensities, fold recognition or homology mod-
eling involved. Obviously, a scheme involving additional
strategic and particularly knowledge based elements
could be devised that would be more practical and
efficient, but our aim here was to see how far we could
get with strict observance of the Anfinsen “sequence
determines structure” paradigm with MD potential func-
tions. A second emphasis in this project is to determine
the contributions to the effective free energy from the
internal torsional, electrostatic and van der Waals
energies, and the electrostatic and non-electrostatic
contributions to hydration (including the hydrophobic
effect), assess the relative importance of various chemi-
cal forces at various stages of prediction trajectories,
and examine the extent to which this model performs
according to conventional wisdom(s) about protein fold-
ing. We anticipate that larger and more complex struc-
tures, particularly those involving multiple b-strands,
will be difficult for this (or any other fully ab initio
method) to predict. Here we expect that a systematic
study of a series of modestly sized case studies of
increasing difficulty, with the capabilities and limita-
tions of the methods fully exposed, will be a valuable
benchmark for further methodological improvements.
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BACKGROUND
Protein Structure Prediction

Recent progress in the area of protein structure predic-
tion and the related protein folding problem is documented
in a number of recent articles and reviews.5 Studies of this
type are motivated by a pressing need for accurate struc-
ture predictions on the large number of protein sequences
is identified in genomics initiatives, with the ultimate
objective of inferring function from structural homologies.
There are also questions about the fundamental nature of
protein folding to be solved, such as the role of funnels vs.
pathways in the route from unfolded structures to a native
form, and the relative importance and timing of phenom-
ena such as nucleation of secondary structural elements,
hydrophobic collapse, and the role of molten globule forms
and other structures as possible intermediates in the
folding process.

Research in protein structure prediction is being pur-
sued in the field along two major lines of investigation.
One approach is “comparative” in nature,29 with informa-
tion from known structures systematically and strategi-
cally incorporated into prediction algorithms. Two classes
of comparative structure prediction methods are homology
modeling29 and threading,30 which in some cases provide a
basis for “knowledge based potentials” that are supplied to
search engines for optimization. Some concerns have been
expressed about the meaning and significance of these
functions.31 The second approach, responding to the chal-
lenge posed by the Anfinsen experiment, is the ab initio
prediction of structure simply from a knowledge of the
corresponding amino acid sequence and specific interac-
tion energies implied by the sequence.4 In ab initio folding,
one must deal with the construction of reliable potentials
describing the interactions within the polypeptide back-
bone and various amino acid side chains on one hand, and
with water and possibly added salt on the other. In most
approaches, a search engine must be applied to a scoring
function to obtain predictions of the native form of the
protein. The empirical nature of comparative methods
obviates obtaining reliable new knowledge about the mo-
lecular physics of structural stability and folding pro-
cesses. A fully ab initio approach, if demonstrably success-
ful at accounting for structures, can be subjected to
analyses that can reveal the relative importance of various
intrinsic energies and solvent effects at various stages of
the calculation and thus provide interpretation as well as
prediction.

Ab Initio Potential Functions

A number of schemes for deriving empirical potential
functions for proteins as a function of conformation have
been set forth.15,16,32,33 Included among these are lattice
based potentials34 and united residue potentials with one
or more virtual atoms representing each amino acid side
chain32 as well as the minimalist Geocore approach.35

While these potentials have been used successfully to
predict a number of structures, in most cases considerable
atomic details are neglected. Thus, there is the possibility
that the physics is compromised to some extent, since late

stage folding is likely to involve a subtle balance of diverse
forces.3 If parameterization of a potential is based on
known protein structures, the strictly ab initio character of
the approach is compromised. Nevertheless, an accurate
prediction tool derived on this basis is of considerable
interest and utility, and can also be incorporated into
hybrid approaches. Meanwhile, considerable efforts have
been applied to the development of all-atom potential
functions for protein atoms and solvent molecules for use
in MD simulations. Empirical potential functions devel-
oped by research collaboratories that have nucleated
around the AMBER,8 CHARMM,9 and GROMOS36 MD
and molecular modeling programs are parameterized
mainly on the basis of experimental data and quantum
mechanical calculations on prototypes of macromolecular
constituents, which are then presumed to transfer to
macromolecules in solution. The accuracy with which such
potentials perform on the equilibrium structure and dy-
namics of proteins7,37 and also nucleic acids38 is well
documented. Solvent molecules are typically included via
explicit representations in the MD modeling, which makes
studies of this genre quite computationally intensive.

The use of all-atom potentials and an explicit model for
solvation is currently out of the question for high through-
put protein structure prediction. However, solvent water
plays an important role in protein stability and thus a good
model for solvation is expected to be essential to accurately
represent the physics in an ab initio modeling approach. A
class of solvent models in which water is treated as a
polarizable dielectric continuum and the electrostatics of
solvation is computed via the Poisson Boltzmann (PB)
equation has received considerable recent attention.39 A
number of variations on continuum solvent models are
being pursued, including full finite difference Poisson
Boltzmann (FDPB) calculations40 and the ACES method
of Lazaridis and Karplus.16 Several recent studies have
demonstrated that the more simplified Generalized Born
model ,17,21 well parameterized, can be used as a rapid
estimator of FDPB results, which in turn agree well with
results on solvation free energy computed using the pertur-
bation method applied to fully explicit molecular dynamics
simulations. Further modifications have brought this model
into line for modeling both solvation energy and pKa shifts
simultaneously,41 correcting a subtle inconsistency in
earlier versions of the method. The GBSA method provides
agreement to ;5% for calculated and observed free ener-
gies of hydration for small molecules and molecular ions.42

A combined GBSA-AMBER potential was used to predict
polypeptide loop geometries43 and in a study closely paral-
lel to this work, GBSA-OPLS-AA potential is being used to
score protein folding decoys.28 In passing, we note several
current initiatives underway in which MDs on proteins
and nucleic acids are being performed in a GB solvent.19,44

In this project, an effective free energy function is
constructed from MD potentials, modified GB approach for
computing the conformation dependent electrostatic free
energy of polypeptide structures and protein solvation,
and the solvent accessibility (SA) method to estimate the
non-electrostatic contribution. The latter includes both
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solvent entropy (cavitation) and solute-solvent van der
Walls interactions and is capable of providing quantitative
estimates of the hydrophobic effect. Moreover, the effect of
added salt can be included in GB, following Jayaram et
al.41 and Tsui and Case,19 by adding a Debye-Huckel term
to the solvation energy. This extends the scope of the
modeling to include environmental conditions closer to
that found in vivo if desired.

Conformational Sampling

In a “brute force” conformational search method for
protein structure prediction, all conformational space would
be randomly sampled in order to find the global minima. It
is, however, well known that protein (not to mention
solvent) conformational space is too large to be fully
sampled in a reasonable time scale, and finding the global
minimum is never guaranteed. Proteins fold to a native
form reliably in the order of seconds in spite of this
problem,45 presumably by utilizing funnels on the free
energy landscape. For recent relevant commentary see the
reviews by Dill and Chan24, Simmerling et al.,26 Kar-
plus,25 and Honig.47 Diverse approaches have been de-
scribed in the literature designed for treating the sampling
problem in protein structure prediction calculations (for a
current review, see Hansmann and Okamoto48). Recent
developments include genetic algorithms,49 conforma-
tional space annealing,50 Newton Operator Torsional Dy-
namics,51 statistics biased Monte Carlo conformational
search,52 self-guided molecular dynamics simulation,53

and the convex global under-estimator (CGU) method.54

Some methods go beyond the random search paradox via
the explicit idea of a protein folding free energy landscape
and funnel theory55; Honig47 has recently described how
this idea is in fact implicit in most if not all of the current
approaches. The multicopy MCSA protocol has reasonable
prospects of dealing with problems inherent in the rugged-
ness of the free energy landscape. Studies on prototype
cases show impressive efficiency on the optimization of a
simple mathematical function representative of the pro-
tein folding problem at low dimensionality.22 Simulated
annealing of polypeptide fragments is a key component of
the currently most successful of knowledge based ap-
proaches to protein structure prediction in the CASP3 and
CASP4 structure prediction contests56 (see also Kawai et
al.57).

METHODS

The structure prediction protocol used in this study,
which utilizes an effective free energy scoring function
based on AMBER and GBSA, and a multiple copy MCSA
search engine is implemented in this laboratory in a
program called REFOLD. Details of the REFOLD protocol
are as follows.

Conformational Free Energy

Conformations of the polypeptide backbone and amino
acid side chains are developed in Cartesian coordinates for
energy evaluation and in internal coordinates for sampling
protocols. The two sets of coordinates are, of course,

rapidly interconvertable during the calculation. The inter-
nal coordinate set is composed bond lengths, bond angles,
dihedral angles, and improper dihedrals, including three
dummy atoms for the optimization. We make the usual
separation of hard modes and soft modes, and assume the
bond lengths and bond angles of the polypeptide to be
fixed. Conformation sampling is thus carried out exclu-
sively in torsion angle space. We construct an effective free
energy DGeff for a polypeptide chain in solution factors as

DGeff 5 DGint 1 Dgsol (1)

where DGint is the free energy intrinsic to the polypeptide
per se and Dgsol is the solvation free energy. Note upper-
case in the rhs of equations denotes quantities intrinsic to
the polypeptide chain per se and lower case is used to
distinguish solvation quantities.

Scoring Intrinsic Free Energy

At constant temperature, the intrinsic free energy can
be expanded as

DGint 5 DUint 2 TDSint (2)

where DUint and DSint are the internal energy and entropy,
respectively. We neglect the effects of configurational
averaging on internal energy, and estimating it from
corresponding values on the Born Oppenheimer Energy
surface, vis.

DUint > DEint (3)

An internal entropy for a structure can be estimated by the
quasiharmonic method.58 As noted by Lazardis and Kar-
plus, the vibrational entropy of a folded protein is large but
there is evidence that it is similar to that of any single
unfolded conformer (see also Lee et al.14). The large
entropy of the unfolded state follows from the multiplicity
of conformers of similar energy, which is important to
thermodynamics but not a problem for scoring functions or
prediction trajectories. Thus, we follow the practice of
neglecting the entropy contribution from the internal
motions of the polypeptide chain. The intrinsic energy
DEint is obtained from AMBER united atom empirical
potential functions.59,60 With bond lengths and angles
fixed, the internal energy is composed of dihedral, electro-
statics and VDW contributions,

DEint 5 DEdihedrals 1 DEes 1 DEvdW (4)

where

Edihedrals 5 O
dihedrals

Vn

2 @1 1 cos~nf 2 g!#, (5)

Eel 5 O
i , j

qiqj

εRij
(6)

Evdw 5 FSAij

Rij
12D 2 SBij

Rij
6DG (7)
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where the definition of terms and force field parameters
are just those listed by Weiner et al.59 With these approxi-
mations, the effective free energy function energy function
reduces to

DGeff > DEint 1 Dgsol (8)

Scoring Solvation Free Energy

The solvation free energy is divided further into two
contributions, electrostatic (el) and nonelectrostatic (nel).
The electrostatic component of solvation energy is calcu-
lated from modified GB model.41 Various uses of the GB
model for the calculation of solvation energy of a molecule
have been extensively documented.18 The defining equa-
tions are

Dgel 5 O
i 5 1

n

@~Dgscr!i 1 ~Dgpol!i# (9)

where

~Dgscr!i 5 2
1
2 3 166S1 2

1
εD O

j 5 1

n qiqj

fGB
(10)

~Dgpol!i 5 2166S1 2
1
εD qi

2

ai
(11)

with fGB 5 ~rij
2 1 aij

2e 2 D!0.5, D 5 rij
2/~2aij

2!, aij 5 ~aiaj!
0.5

and e is the dielectric constant. The Born radii ai are
calculated using formulae of Cramer and coworkers.61

However, only a set of small molecules with energy
minimized structures were used for previous parameteriza-
tion. In this work, we use the peptide itself and the MD
ensemble as the training set and obtain parameters for
each of the AMBER atomic types. Structures for this
purpose were obtained either from MD simulation or
random generation of conformations in the torsional space.
In case of random generation, some conformations close
contacts are screened out. For each structure in the
training set, the electrostatic portion of the solvation free
energy was calculated using the FDPB method in program
DELPHI II . In the FDPB calculation, partial charges and
atomic radii are obtained from AMBER parameter file.
The grid size used was 0.25 Å. With the DELPHI values as
the ideal values, a simulated annealing optimization proce-
dure was applied to obtain the atomic type parameters.
The results are given in Table I.

The non-electrostatic contributions to the solvation free
energy is calculated from solvent accessible area for the
various atoms, SAi. The solvent accessible surface area is
the sum of all atomic contributions and is amenable to
rapid calculation17,62 as

SAt 5 Si P
j 5 1
j Þ 1

N

~1.0 2 PiPijPijk/Si! (12)

where Pi is atomic parameter,

Si 5 4p~ri 1 rs!
2 (13)

Pij 5 p~ri 1 rs!~rj 1 ri 1 2rs 2 rij!S1.0 1
~ri 2 rj!

rij
D (14)

and

pijk 5 P
k

rjk
2

rij
2 (15)

where the product function is over all atoms bonded to
atom i.

For GBSA parameterization purposes, three model pep-
tides were constructed that include all 20 amino acids in a
random order and solvated in a box of TIP3P water
molecules. After minimization and equilibration, 1 ns MD
simulation is run using AMBER 5.0 molecular dynamics
simulation package and the united atom force field.59

From the trajectory of each molecule, 1,000 conformations
were extracted as the training set for the parameteriza-
tion. For each conformation in the training set, the electro-
static part of the solvation free energy was calculated
using Poisson Boltzmann (PB) method by program Del-
phi.63 The solvent accessible area is calculated by the
slicing algorithm using Molecular Dynamics Tool Chest.64

The GB parameters were fit to the PB results. The ASA
parameters are fit to the numerical slicing algorithm using
simulated annealing optimization. The results are listed in
Table I.

TABLE I. GBSA Parameters Used in This Work for United
Atom Types in Amber Force Field

Atomic type MGB ASA

C3 0.968 2.847
C 0.913 1.918
O 0.980 1.237
N 0.848 1.210
H 0.914 1.316
CH 0.926 3.000
C2 1.021 2.999
OH 0.898 1.333
HO 0.904 0.822
N3 0.822 0.536
H3 0.919 0.528
N2 0.879 1.532
CA 0.927 2.871
CC 1.016 2.999
NA 0.828 1.377
CP 0.934 3.000
NB 0.926 2.115
CF 0.892 2.997
O2 0.995 1.915
SH 1.011 1.801
HS 0.955 1.167
LP 0.985 0.300
S 0.990 0.638
CD 0.898 1.770
C* 0.917 2.593
CG 0.962 2.688
CN 0.906 2.647
CB 0.922 2.576

C* 5 sp2 aromatic carbon in 5-membered ring with one substitute.
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Analysis of Results

For analysis and interpretation of results, the formula-
tion of configurational free energy as described above is
readily decomposed into various physically meaningful
contributions. The intrinsic term can be divided into
torsional, electrostatic, and van der Waals contributions
as per Equations 1–7. The solvation energy is likewise
decomposed into electrostatic and non-electrostatic contri-
butions, such as

Dgnel 5 g z SA (16)

Here, the parameter g is set to 7.2 cal/Å2 based on
calibration from experimental data17 on the solubility of
aliphatic alcohols. The parameter g is composed of two
parts,

g 5 gcav 1 gvdW (17)

which define the contributions to the non-electrostatic free
energy from cavitation effects and solute-solvent van der
Waals interactions. Values for these quantities suggested
by Jayaram et al.65 are gVDW 5 147 cal/Å2 66 and gcav 5
239.8 cal/Å2.

Multicopy Simulated Annealing

All structure predictions begin with an extended form of
the polypeptide chain as the initial configuration. From
this structure, a set of n replicas is spawned, Each is
subjected to an independent simulated annealing proce-
dure, so that the random numbers applied to select and
perturb torsional displacements send each replica down a
unique pathway on the free energy landscape. In this
study, all torsional angles were allowed to move, with
equal probabilities applied to backbone and side chain
torsions. The side chains are flexible during the folding
process. At the outset of a prediction trajectory, van der
Waals steric clashes are immediately encountered, since
we do not otherwise prevent clashes during each Monte
Carlo move. It is inadvisable to spend much computer time
on structures that clash out, so first we compute the VDW
contribution to the intrinsic energy of each replica. When
this interaction is more than three times larger than the
initial structure, a short simulated annealing in Cartesian
space is performed to try to relax the structure. If the
energy still remains above the 33 threshold, we discard
the move.

After a certain number of steps depending on the size of
system, the annealed conformations are sorted with re-
spect to effective free energy. The half with higher values
are discarded. The lower energy structures are each
duplicated and form the basis for another iteration of
optimization. The temperature annealing schedule is
started at 800 K with 100 to 500 K steps of Metropolis
sampling. Subsequent temperatures typically chosen are
700, 600, 500, 400, 350, and 300 K. If an optimization at
300 K is not converged, we start again at 800 K using the
current configuration. This procedure is repeated until the
energy changes between two successive steps is , 0.1
kcal/mol. We note the similarities in MCSA to genetic

algorithms for search procedures.49 In MCSA, each of the
copies is a conformational “mutation,” which is subjected
to evolutionary pressure applied by simulated annealing
and the successive cycles of pruning the prediction en-
semble. If a large number of copies were considered, a
Monte Carlo Metropolis pruning could be applied; here we
just take the best 8/16 at each stage of the annealing
schedule. The use of “crossovers” as illustrated by Unger
and Moult49 on a 2D lattice model of protein folding is a
possible line of subsequent refinement (vide infra).

The prediction scheme as described above is imple-
mented on a local Beowulf class PC cluster67 comprised of
60 Pentium and AMD Athlon PCs interconnected by fast
ethernet. An advantage of MCSA optimization is that the
network communication is no longer a bottleneck for
parallel computation as in MD. Implementation of the
calculation using Message Passing Interface (MPI) proto-
cols shows a linear scale for parallelization up to 16 nodes.
Theoretically, the scaling of multicopy algorithm on multi-
processors is almost linear if the communication time
compared with the time taken by optimization within each
replica is neglected. In reality, the scale of the paralleliza-
tion is limited by the communication mechanism for each
platform. A benchmarking of the computational process
from our PC Cluster is provided in Figure 1.

Calibration: Ala Dipeptide

An MD simulation of 1 ns was performed on the proto-
type system alanine dipeptide in solution including ex-
plicit water molecules, starting from the all trans extended
form. The simulation involved minimization followed by
heating to 300 K over 10 picoseconds. and a 30-ps period of
equilibration. MD was then performed from the equili-
brated structures for 1 ns, during which time the dipeptide
interconverts among several major conformations. The
probability density map as a function of Ramachandran c
and f angles from the MD on Ala dipeptide is shown in
Figure 2. As expected, the large peak in the b sheet region
of the probability map corresponds with the region of the
conformational global minima. As a test, we applied the
REFOLD to this molecule starting from an extended
structure, and compared the results with those from MD.

Fig. 1. Benchmarking REFOLD MCSA on our local Beowulf PC
cluster. From the graph, the program scales linearly up to 16 processors
running under MPI/LAM.
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The results are shown in Figure 3, with the results from
single copy and multicopy minimizations given in Figures
3(a) and (b), respectively. On the density map of the single
copy optimization, the global minima is sampled as well as
two local minima whereas with multicopy, essentially all
replicas are converged to the global minima. This compari-
son shows clearly that the multicopy protocol has advan-
tages for structure predictions with respect to this class of
problems.

Calibration: Performance of DGeff on Structures
From Protein Crystallography

Further calibration of REFOLD was carried out based
on two protein crystal structures, Barnase (1BNI) and
Crambin (1crn) with the aim of determining how well
structures obtained from minimization of the effective
energy function agree with protein crystal structures to
begin with. Refold calculations were carried out beginning
from the known crystal structure, submitted to a full
temperature annealing cycle applied from 800 to 300 K. At
each temperature cycle, 8 copies and 1,000 search steps
were carried out for each copy. The resulting calculated
structure with lowest energy was compared with the
native structure by the Local Global Alignment (LGA)
utility of Zemla68 at http://PredictionCenter.llnl.gov, with
a 10 Å cutoff. The resulting RMSD is 3.3 Å for Barnase and
2.7 Å for Crambin, i.e., reasonable close accord. The local
RMSD histograms are shown in Figure 4 for Barnase and
Crambin, and show some variation by residue and some
patterning, such as a trend towards higher RMS at the
C-terminal ends, which may or may not be significant.

Calibration: Performance of DGeff on Decoys

Decoys are non-native structures for a given protein that
are closely related to the native form but differ in salient
details, and differentiation of decoys from the native
structure is a primary means of preliminary testing of
effective energy functions in protein folding.69 Several
compilations of protein structure decoys are available,70

but generally the decoy sets are not sufficiently detailed to
be applied to united atom or all atom potential functions.
Thus, we generated sets of structures for barnase and
crambin from ambient temperature and high temperature
MD simulations including explicit water. Trajectories of 1
ns at 300 K and 5 ns at 600 K were carried out for each case
using AMBER 5.0 by standard protocol using the Cornell
et al. force field8 and PME boundary conditions.71 The MD
at 300 K provides a distribution of structures in the
vicinity of the native form, and the 600 K MD provides a
set of decoys. Structures were culled from each trajectory
at equally spaced intervals, and used as input to a
REFOLD effective free energy calculation. The resulting
energy profiles from REFOLD calculations for native and
decoy structures of crambin and barnase are shown in
Figure 5. The results indicate that the native and decoy

Fig. 2. Probability distribution map in f/c space of Ala dipeptide from
1 ns MD simulation using AMBER 5.0 with the united atom force field. The
three major clusters are a-R, b and (small peak) a-L.

Fig. 3. Comparison of the efficiency of a single copy and multicopy
algorithm results on f/c population maps for the Ala dipeptide: (a) single
copy algorithm; (b) multicopy algorithm.
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sets for barnase and crambin are well differentiated with
respect to effective free energy.

For a further test of our scoring function on decoys, we
randomly selected 6 proteins from the Rosetta web site.56

We randomly selected one decoy conformation from 1,000
conformation for each protein provided by the Rosetta
decoy set. The corresponding crystal conformation was
obtained from the Protein Data Bank and the residues

Fig. 4. Histogram of local RMSDs between calculated structures and crystal structures: (a) crambin and (b)
barnase.
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absent in the decoy form were deleted. Using Amber 5.0,
50 steps of the steepest decent minimization were per-
formed on the decoy form to relieve any VDW repulsions.
The energy components and the total energy were calcu-
lated for each conformation based on our effective poten-
tials. The results are summarized in Table II. For all six
Rosetta proteins, the native form has lower free energy
than the corresponding decoy. A more comprehensive
study of decoys is, of course, appropriate, but these results
combined with those on barnase and crambin described
above are considered sufficient for proceeding with explor-
atory studies.

RESULTS

REFOLD prediction trajectories were carried out for 5
polypeptides of various lengths ranging from 8 to 36 amino
acids, chosen as a series of progressively more challenging
cases. The smallest case was an 8-residue polyalanine
sequence, followed by a 12-mer with more complex side
chains, for which a crystal structure is available. A 16-mer
with 40–60% a-helix based on CD served as the next most
complicated case. The preliminary tests carried out so far
conclude with a 15-residue polypeptide exhibiting b-turn

geometry, and the 36-residue villin headpiece. Villin is an
advantageous case to study because of the parallel MD
studies available on this system for comparison by Koll-
man and coworkers.13,14 For Villin, we provide a more
detailed analysis of results and demonstrate how the
results from our calculations can be decomposed as a
function of the prediction coordinate and used to under-
stand the chemical forces active at various stages of a
prediction trajectory.

AAAAAAAA (Ala 8)

Alanine has the greatest tendency among amino acids to
form a-helices, and we first applied to a sequence of 8
consecutive Ala residues capped at the C-terminal and
N-terminal ends with acetyl (Ac) and N-methyl-amine
(NHMe) groups. The prediction process was initiated from
a fully trans extended form of the molecule. This calcula-
tion involved 16 replicas on 16 PC nodes. The result is
shown in Figure 6 in a series of four panels, which depict
the initial form, the structure after 1/3, 2/3 and at comple-
tion, respectively. The total length of the folding involved
70 K steps of MCSA. At conclusion, the structure has
clearly adopted a reasonably regular form of a-helix. This
is actually a “toy” problem, since the molecule is expected
to be insoluble in water. This results allows us to point up
the difference between structure prediction based on a
scoring function and a well-defined statistical mechanics
treatment of protein folding, in which non-local entropy
effects act to thermodynamically destabilize folded forms.72

Similar test cases have served in other structure predic-
tions.51

QLLKKLLQQLKQ (Hill et al., 12-mer)

REFOLD was next applied to a 12-residue peptide
Ac-QLLKKLLQQLKQ-NHMe, a synthetic peptide com-
prised of a larger variety of amino acid residues with
longer side chains than Ala, for which a crystal structure
was reported by Hill et al.73 The prediction process was
initiated from a linear structure, also using 16 copies, one
per processor. The prediction converged after ;230 K
steps of simulated annealing, and prediction trajectory is
depicted in Figure 7. The prediction yielded a lowest
energy structure with an RMSD of 2.65 Å (heavy atoms)
with respect to the Hill et al. crystal structure. The helix
region of the predicted and observed structure overlap
very well. The side chain of one residue from the tail
section of the prediction lies in the opposite direction from
that of the crystal structure, possibly a consequence of the
flexibility of side chains in solution. In this case, several of
later stage structures in the prediction were close in
energy. These structures and their corresponding RMS
values with respect to the crystal form are shown in Figure 8.

(AAQAA)3 Y (Scholtz et al. 16-mer)

A 16-mer peptide is a de novo designed peptide that folds
in solution74 to a structure with a mixture of a-helix and
random coil. REFOLD was again initiated from a fully
extended conformation, with optimization was carried out
on 16 copies. The calculated folding trajectory is shown in

Fig. 5. Free energy distributions of native and decoy conformations
for (a) crambin and (b) barnase.
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Figure 9. The predicted form shows extensive a-helix, with
frayed C-terminal and N-terminal ends. There is no crys-
tal structure available for this sequence, so in this case the
predicted structure must be assessed by other means.
First, PROCHECK75 was used to make a Ramachandran

plot (Fig. 10), from which one can see that all backbone
angles lie in the allowed regions. Here 10 residues are
located in the most favored region, four of them are located
in the next most region, and all are within in the region
denoted “generous.” No residue is located in any disal-

Fig. 6. REFOLD results on Ala-8. a: Starting structure. b: Early stage. c: Late stage. d: Predicted
structure.

Fig. 7. REFOLD results on Hill et al.73 12 mer.

TABLE II. Energy Comparison Between Native Protein and Rosetta
Decoys (Kcal/mol)

1aa2 1lfb 1lis 1r69 1ris 1vls

DGNative-Decoy 22060.6 2249.8 2868.9 2474.5 2642.6 2705.0
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lowed region. Figure 11 shows that the a-helix is formed in
the central region, with reduced solvent accessibility. The
predicted can be compared with helix probability predic-
tions calculated by the program CapHelix based on Lifson-
Roig calculation.76 Similar comparison between the Lifson-
Roig model and isotope labeled sequence YAAKAAAAK-
AAAAKAAH has been reported earlier,77 which shows
that residues at the N-terminus and in the center are more
likely to be helical than residues in the C-terminus. For
the Scholtz 16-mer, the Lifson Roig calculated probability
as a function of residue positioning is shown in Figure 12.
From the plot, we can see that the most probable region for
a helix is at or near in the middle of the sequence,
consistent with the predicted helix structure from the
MCSA algorithm. The CapHelix calculation also suggests
higher values for nucleation probability at both end posi-
tions, which seems to match what is observed in the
prediction trajectory.

GEWTWDATKTFTVTE (PDB Code 1GB1)

This sequence has a b-strand segment (residue 41–56)
chopped from a NMR determined structure, the immuno-
globulin binding domain of streptococcal protein.78 In
REFOLD, an extended structure of this sequence folds

successfully to a b motif (Fig. 13). The RMSD between the
predicted and crystal form is 4.5 Å.

Chicken Villin Headpiece (PDB Code 1VII)

Villin is a 36 residue protein with a three helix structure
as determined by NMR.79 REFOLD applied to this se-
quence beginning with an arbitrary V-shaped extended
structure yielded the prediction trajectory shown in Figure
14. The RMSD between the predicted structure and the
crystal structure is 3.4 Å (including side chains) and 1.01 Å
(backbone only). An RMS coverage graph for this predic-
tion is shown in Figure 15(a)80 and in an local RMS
histogram from the LGA utility in Figure 15(b). Some 90%
of the amino acid residues in Villin are predicted with 1.5
Å, which we consider excellent results considering the
practical resolution of the methodology. The local RMS
histogram shows the lowest local RMSD is in the longest
helix region (helix 3).

An analysis of the calculated free energy components of
Villin as a function of progress along the prediction
trajectory is shown Figure 16. The sum total decomposed
into contributions intrinsic to the molecule and from
solvation are shown in Figure 16(a). The tradeoff between
decreasing internal energy and increasing (less negative)

Fig. 8. Set of low score predicted structures for Hill et al.73 12 mer, including RMSD values to crystal
structure.
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solvation energy is clearly observed. While the intrinsic
contribution clearly controls the overall prediction trajec-
tory, if the solvent term were to be neglected a much
different result would have been obtained. A further
decomposition of the intrinsic and solvation contributions

Fig. 11. Secondary structure and solvent accessibility plot of REFOLD
structure on Scholtz et al.74 16-mer.

Fig. 9. REFOLD results on the Scholtz et al.74 16-mer peptide. 0: Starting structure. 1–4: Intermediates
along the prediction trajectory. 5: Predicted structure.

Fig. 10. Ramachandran plot of calculated values of f,c for REFOLD
result on Scholtz et al.74 16-mer.
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is shown in Figures 16(b) and (c), respectively. The intrin-
sic contribution to the effective free energy function is seen
to be dominated by electrostatics in the early stages of the
prediction and by the van der Waals interactions in late
stage refinement. The calculated solvation energy features
opposing contributions from electrostatics and non-
electrostatic contributions, with electrostatics of solvent
polarization dominant. For the non-electrostatic compo-
nent, the cavity term is seen to increase along the folding
trajectory, reflecting the free energy required to create
room in the solvent for the folded protein. It is conven-
tional to associate the burial of non-polar residues with
hydrophobic effect, which is factored out of the total and
also shown in Figure 16(c). This is seen to contribute only a
fraction of the total.

In order to compare the results obtained on energy
components as a function of prediction trajectory for all the
cases studied, we fit the profile of each of the free energy
components for each case to an exponential decay function
of the simple form,

E 5 E0 1 Ae 2 ~t/t!

in which E0, A, and t0 are fitting parameters. From the
results, the magnitude of each contribution can be com-
pared and the correlation “time” t gives an idea on how fast
from the initial folding the decay of a term occurs. The
analysis is summarized in Table III. Preliminary consider-
ation of the results shows each case to be somewhat
different, which suggests to obtain the most information
from this type of approach we will need to study a large set
of cases grouped by classifications such as fold category.
This is quite feasible, but well beyond the scope of the
present study.

DISCUSSION

In the preceding, we have described a set of exploratory
studies in ab initio protein structure prediction, using an
AMBER united atom empirical energy functions, a GBSA
implicit solvent model, and a multiple copy MCSA search
engine combined into a prediction protocol we call RE-
FOLD. The results show that REFOLD as implemented
recovers the structures of test cases consisting of diverse
structural motifs within 6 Å. In particular, a prototype a/b
motif was treated successfully and, in our most challeng-
ing test case, the 36-residue villin headpiece was predicted
to within 3.5 A RMS (including sidechains) and 1.10 A
RMS (backbone only), surprisingly good for a pure “se-
quence determines structure” ab initio structure predic-
tion. Analysis of the results in terms of energy components
shows the general counterbalance of intrinsic energy and
solvation effects over the course of the unfolding trajectory
to be successfully reproduced. For the largest and most
protein-like case studied, early stage folding is character-
ized by offsetting contributions from the terms intrinsic to
the polypeptide chain and terms from solvation. Intermedi-
ate stage folding by compensation of solute contributions
and solvent contributions and late stage folding by subtle
balance of various terms.

Certain specific details are worth noting, both on the
evolution of the calculated structure of villin from an
extended to folded form, and as an illustration of how the
methodology yields information on the how and why of
structure prediction. Examination of the results for villin
with respect to secondary and tertiary structure shows
that the two orders of structure form simultaneously as
the prediction evolves. One of the ideas about protein
folding is that certain cases pass through molten globule
states stabilized by hydrophobic forces. The extent to
which this is observed in REFOLD can be readily exam-
ined by a more detailed analysis of the structures and
calculated properties such as radius of gyration (all heavy
atoms) along the prediction trajectory. The results of for
villin heavy atoms are shown in Figure 17, but show no
evidence of a plateau, only a monotonic decline. Consider-

Fig. 12. Plot of calculated helix probability vs. residue position for
Scholtz et al.74 16 mer. Calculated helix probabilities were generated from
a modified Lifson-Roig calculation using the program CapHelix.76

Fig. 13. REFOLD results on a b segment sequence GEWTWDATKT-
FTVTE.
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ing this results and the contribution of non polar groups to
the non-electrostatic component of the solvation energy
(Fig. 18) above shows van der Waals solvation terms are
more important in the early stages of the prediction
trajectory, and the cavity terms associated with the hydro-
phobic effect are more important at later stages.

The good results on villin are tempered somewhat by our
experience so far in going to larger proteins, but a system-
atic study of the reliable limit of REFOLD as implemented
is a work in progress. The CASP4 prediction contest closed
in September of 2000, and we had only sufficient time to
prepare one prediction, the 128 residue target T0110 of
sequence MAREF KRSDR VAQEI QKEIA VILQR EVKDP
RIGMV TVSDV EVSSD LSYAK IFVTF LFDHD EMAIE
QGMKG LEKAS PYIRS LLGKA MRLRI VPEIR FIYDQ
SLVEG MRMSN LVTNV VREDE KKHVE ESN. This
forced us to jump from a 36 to a 128 residue prediction
without the benefit of an aufbau process, and we proceeded
on this with considerable trepidation. In this case, our
prediction protocol was not purely ab initio, but involved
knowledge based secondary structure prediction for the
initial structure from a consensus of results from http://
jura.ebi.ac.uk:8888 plus some selective elimination of non-

globular intermediate results. The prediction was submit-
ted, and in the on subsequent assessment turned out to be
14.3 Å from the crystal structure, an a/b motif. The
discrepancies are nontrivial, indicate for more complex
cases there is much to do before truly satisfactory predic-
tions can be achieved. A Hubbard type RMS coverage map
for all the predictions made on T0110 in CASP4 is shown
in Figure 19. Compared with all the other predictions on
this target, our submission was nonetheless in the middle
of the pack. The best predictions on this target were quite
good, but also involved extensive use of knowledge based
information and or statistical potentials.

The results from this exploratory study and those of this
genre emerging from other groups are encouraging enough
to undertake further testing and improvements, and also
to explore how an ab initio REFOLD protocol might be
incorporated into an expanded structure prediction proto-
col for late-stage refinement of knowledge-based results.
Specific deficiencies in the potentials can be identified with
the aid of sequence dependent and sequence independent
RMS coverage graphs and LGA local RMS histograms.
Our choice of intrinsic energy function was dictated by a
decision to restrict ourselves to published force fields, but

Fig. 14. REFOLD results on villin.
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an improved all atom AMBER force field could be used to
construct a second-generation, united atom effective-free
energy function. Other force field options are available as
well,16 and can be used as a sensitivity test and determine
the extent to which predictions of this genre depend on fine
differences in force fields. With regard to the solvent
model, studies that provide an improved treatment of the
interior of proteins in GBSA type models have been

described,81 and it will be interesting to see what differ-
ence this effect makes in predictions. In the area of
sampling, the MCSA search procedures could be heuristi-
cally fine tuned with respect to dominant contributions
from various terms at various stages of the prediction
trajectory. Beyond a basic implementation of simulated
annealing, there are a host of advanced Monte Carlo based
sampling methods that hold further promise for improved

Fig. 15. Hubbard plot and LGA local RMSD histogram for villin.
Fig. 16. Calculated free energy components of villin as a function of

progress along the prediction trajectory.
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performance.48 For the most part, these have been tested
only on prototypes, and so far not a lot of cross comparison
is available. The results of this study, extended with
results on more previous CASP targets or structures from
other sources, contribute further benchmark cases from
which one may quantitatively document progress in meth-
odological developments.

In concluding, ab initio structure prediction as described
herein is only part of a more general scheme purely
theoretical approach to the problem. Commentary by K. A.
Dill at CASP4 noted that one way to distinguish true
physics based predictions from other methodologies that
had previously been classed as ab initio is a legitimate
dependence on temperature and Boltzmann’s equation.
While MCSA employs an effective temperature in setting
an annealing schedule, this is an effective temperature
and does not yield a method in compliance with Dill’s
criteria. To move in this direction, the REFOLD type
protocol, either with or without knowledge-based input,
could serve as the initial stage of a hierarchy of steps that,
in the final analysis, produces a properly defined Boltz-
mann statistical mechanics treatment of the problem. We
are investigating the following series of steps, using villin
as a test case: (1) use REFOLD to obtain a low resolution
prediction for the structure of the native state (N-search);
(2) use this structure as a basis for a search for substrates,
treating the protein plus explicit solvent using a high
temperature MD followed by quenching at well defined
intervals to identify substates (n-search). An alternative

possibility is to use a hybrid MC MD protocol for substate
search.82 A final step would be to determine the statistical
weights of substates (wn-search) by clustering methods or
2D RMS.83 The result would be a structure prediction
protocol that at the final step is consistent with statistical
mechanics and displays proper temperature-dependence,

TABLE III. Results of Single Experimental Fitting of Free Energy Components Villin

Terms DIH ELE VDW MGB sVDW Cavity Total Fa Wb

E0 2762.2 262.5 2365.6 2760.2 163.43 2138.70 2989.47 11.1 16.9
A 954.6 1023 413.9 2377.7 115.18 2100.10 883.70 8.6 11.28
T0 38.2 0.02 0.12 0.11 0.13 0.11 0.03 0.19 0.08

aHydrophobic contributions to non-polar solvation free energy from hydrophobic residues (ACFILMV).
bHydrophobic contributions to non-polar solvation free energy from hydrophilic residues (DEGHKN-
PQRSTWY).

Fig. 17. Calculated radii of gyration along the REFOLD prediction
trajectory for villin.

Fig. 18. REFOLD results on exponential decay of non-polar solvation
contributions from both hydrophobic and hydrophilic groups for Villin.
Thick line: total non-polar solvation. Thin line: non-polar solvation contribu-
tions from hydrophilic groups. Dashed line: non-polar solvation contribu-
tions from hydrophobic groups.

Fig. 19. Hubbard plot from CASP4 for target T0110. Bold line:
REFOLD prediction.
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at least in principle. The practical viability of this scheme
of course remains to be demonstrated, but individual
elements are each obviously feasible. Current studies of
villin and several other cases are in progress to provide a
demonstration.

SUMMARY AND CONCLUSIONS

Studies of ab initio protein structure prediction, using
an AMBER united atom empirical energy functions, a
GBSA implicit solvent model, and a multiple copy MCSA
search engine were described. In the prediction protocol,
structures are periodically culled, evaluated on the basis of
calculated effective free energies, and the lower energy
forms are used to spawn new generation of structure
prediction on an annealing schedule of progressively lower
effective temperatures. The choice of energy function takes
advantage of the considerable parameterization efforts
originally designed for MD simulations. The GBSA solvent
model is simple and economical to implement, represents
solvent dielectric polarization, van der Waals and cavita-
tion effects, and is parameterized to give accurate esti-
mates of solvation free energies on prototype cases. The
MCSA protocol takes explicit advantage of the energy
landscape protein folding, and Monte Carlo Metropolis
sampling has the ability to escape to some extent from
metastable local minimal on the free energy surface. The
results show that the method as implemented to recover
the structures of test cases consist of diverse structural
motifs within 6.0 Å RMS. Analysis of the contributions of
various components of the conformational free energy as
function of the folding trajectory shows that prediction
follows a landscape model of protein folding, and the
contribution of factors such as electrostatics, van der
Waals interactions, and the hydrophobic effect fully quan-
tified. The results are sufficiently promising that further
studies of this type of protocol are warranted.
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