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Hidden Markov models from 
simulations on DNA 
Kelly M. Thayer*t* and D. L. Beveridget*? 

Departments of *Molecular Biology and Biochemistry, ?Chemistry, and tMolecular B 

Edited by Harold A. Scheraga, Cornell University, Ithaca, NY, and approved April 24, 

An enhanced bioinformatics tool incorporating the participation of as 
molecular structure as well as sequence in protein DNA recognition the 
is proposed and tested. Boltzmann probability models of sequence- sca 
dependent DNA structure from all-atom molecular dynamics sim- sca 
ulations were obtained and incorporated into hidden Markov sh( 
models (HMMs) that can recognize molecular structural signals as reg 
well as sequence in protein-DNA binding sites on a genome. The be( 
binding of catabolite activator protein (CAP) to cognate DNA seo 
sequences was used as a prototype case for implementation and sca 
testing of the method. The results indicate that even HMMs based an 
on probabilistic roll/tilt dinucleotide models of sequence-depen- po 
dent DNA structure have some capability to discriminate between (21 
known CAP binding and nonbinding sites and to predict putative gei 
CAP binding sites in unknowns. Restricting HMMs to sequence only has 
in regions of strong consensus in which the protein makes base cr) 
specific contacts with the cognate DNA further improved the cal 
discriminatory capabilities of the HMMs. Comparison of results tio 
with controls based on sequence only indicates that extending the de, 
definition of consensus from sequence to structure improves the co] 
transferability of the HMMs, and provides further supportive atl 
evidence of a role for dynamical molecular structure as well as em 
sequence in genomic regulatory mechanisms. mc 

in 
The idea that structure as well as sequence might serve as a I 

useful bioinformatics screening criterion has considerable mc 

potential in genomics for elucidating similarities with low se- be 
quence consensus. The proposal that protein-DNA recognition nu 
involves molecular geometry as a supplement to sequence-based, int 
nonbonded contacts dates back at least to the observation of cal 
structural irregularities in the first high-resolution x-ray crystal a f 
structure of B-DNA (1, 2). However, structural characteristics of P? 
DNA at the most fundamental level, Boltzmann statistical of 
mechanics, is described in terms of the probability of achieving co] 
a particular conformational or helicoidal state at a given tem- de, 
perature, rather than a single time averaged form. We propose sol 
herein a methodology in which probability models of dynamical the 
structure derived from molecular dynamics (MD) simulations on be 
DNA including counterions and water (3, 4) are incorporated ap: 
along with DNA sequence information into hidden Markov sei 
models (HMM) (5, 6) suitable for genomic analysis. HMMs of 

already provide a statistical framework for protein and DNA wil 
sequence alignments (6-8), and the probabilistic nature of yes 
HMMs per se (9, 10) is ideally suited for incorporating Boltz- ces 
mann probability models of molecular structural characteristics str 
from MD into a bioinformatics tool. The binding of catabolite sal 
activator protein (CAP) to cognate DNA sequences (11-13) be' 
serves as a model protein-DNA binding system and basis for he 
demonstration and testing of the methodology. The resulting 
HMMs are applied to scans of the Escherichia coli genome. The inf 
results provide further exploration of a role for molecular 
geometry as well as sequence in protein DNA recognition and 
specificity as a means of genomic searches. Thi! 

Abt 

Background Ma 
dyn 

The hypothesis of a molecular structural component in protein- seq 
DNA recognition is the basis of a number of recent research *To 
studies aimed at using observable properties of DNA sequences db 
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a basis for genomic searches. A base pair scale derived from 
sequence dependence of propeller twist has been used in 

ns of aligned polymerase II promoters (14). A dinucleotide 
le based on sequence-dependent melting propensities was 
)wn to have diagnostic capabilities for prokaryotic promoter 
ions (15). Dinucleotide scales based on gel retardation have 
n developed by Bolshoy et al. (16) and used as a basis for a 
rch for promoter sites by Ozoline et al. (17). Trinucleotide 
les have been developed based on both DNase I digestion (18) 
i nucleosome positioning (19, 20), and used in scans of 
ymerase II promoters (14). Perez-Martin and de Lorenzo 
) have recently reviewed the literature on DNA bending and 
lomic transcription. Recently, Lavery and Lafontaine (22, 23) 
re proposed a method, ADAPT (24), which begins with the 
stal structure of the DNA in a protein-DNA binding site and 
culates the compatible sequences based on energy minimiza- 
n. An integrative view of the structural hypothesis has been 
reloped by Pedersen et al. (25) and presented in a novel 
or-coded computer graphic wheel called a DNA structural 
is for E. coli and 17 other prokaryotic genomes. Numerous 
pirical correlations between functional genomic sites and 
lecular properties of the DNA were noted, including regions 
which all characteristics had extreme values simultaneously. 
experiments do not directly yield probability measures or 
dels, but probabilistic description of dynamical structure can 
obtained from MD simulation. MD simulation (26) involves 
nerical integration of Newtonian laws of motion based on 
ermolecular forces computed from empirical or semiempiri- 
potential functions and results in a description of structure as 
unction of time. With the availability of increased computer 
ver, MD has become widely used for computational modeling 
biological macromolecules in solution (27-29). Although 
nputationally quite intensive, MD can generate all-atom 
;cription of the dynamics of in vitro DNA oligonucleotides in 
ution including solvent water and counterions explicitly, and 
structural characteristics of DNA suitable for this project can 
obtained from an analysis of MD results. The field of MD 
)lied to DNA and nucleic acids in general has been under 
ious development since the early 1980s (30). The assessments 
current MD force fields and simulation protocols compared 
h experimental data show dramatic improvement in recent 
irs (3, 4). Although some specific deficiencies remain, suc- 
sful descriptions of DNA sequence effects on dynamical 
ucture (31, 32), conformational transitions (33, 34), and 
lent features of DNA bending and bendability (35-37) have 
mn reported. However, to our knowledge, MD on DNA has not 
retofore served as the basis for a genomic search. 
-IMM provide a natural way of incorporating both sequence 
ormation and probability models of structure into a form 

paper was submitted directly (Track II) to the PNAS office. 

reviations: CAP, catabolite activator protein; MD, molecular dynamics; HMM, hidden 
kov model; MDS, molecular dynamical structure; CSQ/MDS, consensus sequence- 
amical structure hybrid; SEQ-HMM, sequence-only-based HMM; MDS-HMM, MD and 
Jence-based HMM. 
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Fig. 1. (A) Crystal structure of the CAP DNA complex (41); (B) sequence logo 
indicating high information content in the half sites, constructed from set of 
known CAP binding sites considered in this article. The Logo figure was 
created from http://www.bio.cam.ac.uk/cgi-bin/seqlogo/logo.cgi. Arrows 
indicate mutations that, in various combinations, significantly affect binding 
affinity (44). 

suitable for analyzing genomic DNA (6,8). HMMs, following the Fi 
notation of Baldi et al. (7), are a general statistical technique 
defined on a set of n states S = [S1, S2,... , Sn]. On moving from 
state to state consistent with a set of Markov transition proba- in( 
bilities T = [tij], each state emits, based on emission probabilities se( 
E = [ei,], a sequence of symbols ai from a well defined alphabet wi 
a = [ai, a22 ... am]. The process is Markovian in that transitions thi 

depend only on the current step and that immediately preceding, or 
and "hidden" because the path of the system from state to state su 
is probabilistic and generally not an output of interest as long as 
the symbols emitted are consistent with the model. "Training" M 
an HMM involves calculating numerically the transition and Me 
emission probabilities T and E based on a set of appropriate data. se( 
Extensive applications of HMM in computational biology are on 
described in the recent literature (9). Notably, HMM studies of str 
multiple sequence alignment (38), protein DNA binding sites fie 
(14), and gene finding (39) have already been developed on the els 
basis of DNA sequence alone, be 

The binding of CAP to DNA, a well characterized example of pr 
a genomic regulatory system, was chosen as a demonstration th( 
case. CAP activates the transcription of many operons involved us 
in the uptake and catabolism of various sugars and other carbon Th 

sources, and in addition functions as a repressor of its own gene. va 
The crystal structure of CAP both uncomplexed (40) and str 
complexed with a 30-bp oligonucleotide (41) have been reported 2) 
(Fig. 1A). The CAP protein structure contains a helix-turn-helix de 
(HTH) motif extending over some three turns of DNA helix by 
(-36 bp). The target site for CAP contains an interrupted dii 
inverted repeat with a highly conserved TGTGA cassette located tul 
one half turn away from the center of palindromic symmetry in an 
one of the monomer units; the consensus of sequence in the ea 

binding region of the other monomer is not as strong. The HTH tiz 
motif of CAP binds to the major groove of the cognate DNA di 
sequence, which in the crystal form narrows the major groove 1, 
and widens the minor groove compared with canonical B-form ph 
DNA structure. This occurs in conjunction with a -45? localized be 
deformations produce by base pair roll at TpG steps, resulting in 1) 
a ~90? overall bend in the bound DNA. Recent studies of ral 
complexes involving DNA and CAP mutants (42, 43) provides th4 
additional perspective on structural issues as well direct and ra( 
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g. 2. Definition of roll/tilt bending dials for a DNA base pair step (45). 

lirect readout in protein DNA complexation. Despite the low 
tuence homology in regions not involved in specific contact 
;h the protein (Fig. 1B), certain combinations of mutations in 
s regions modulate the half-life of the bound species to on the 
ler of 100-fold that of the biologically active site (44), further 
;gesting a role for indirect readout in the CAP-DNA system. 

.thods 
)lecular Dynamics Simulations. Seven MD simulations on DNA 
iuences were obtained from a recent study of sequence effects 
DNA structure (37) and used to form probability models of 

uctural variables. Full details of simulation protocols, force i 
Id (AMBER parm.94), and analysis of the results are reported 
ewhere (37). This particular set of sequences was chosen 
cause the MD simulations were all performed using the same 
)tocol, environmental conditions, and temperature, and thus 

results by base pair step are as comparable as possible. We 
: in this study only base pair roll and tilt by dinucleotide step. 
e roll/tilt pair (16, 45, 46), although not the only operational 
i:ables in this problem, is appropriate for a simple demon- 
ation of our methodology. Polar "bending dials" (ref. 45; Fig. 
were used to display the magnitude and direction of sequence- 
pendent deformations obtained from analysis of all of the MD 
base pair step. Points on a bending dial carry magnitude and 
ection of stepwise deformation of the local dynamical struc- 
'e from a reference state of canonical B DNA (47). To avoid 
ifacts from end effects, the first and last base pair steps from 
:h sequence were not included. Each bending dial was digi- 
ed into directional quadrants k = {1, 2, 3, 4} associated with 
placements of roll toward the major and minor grooves (k = 
3) and displacements of tilt toward the respective sugar 
osphate backbone (k = 2, 4). The radial coordinate of each 
ading dial was digitized into rings of radii rj, j = {1, 2, ... 
defined such that the area between each ring, specifying a 
ige of conformational magnitudes, encompasses (100/1)% of 
c total points for the bending dial a. The average of these 10 
tial coordinates rar is just 
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Fig. 3. Connectivity of the linear architecture of the HMM used in this study. th< 
Our models have n = 36 instead of n = 3 as shown in the figure (see text). sal 

pr 
th< 

rar = rar/m [1] 
a0 

and taken to specify the reference B-form DNA base pair step wh 
behavior. This was used as the cutoff on all a dials and the point Be 
in each region (k, 1) bounded by the annular rings Rar. Direc- frc 
tional quadrant divisions k were counted and normalized to give we 
values for the conformational probabilities P,(k, 1), where 

P,(k, I) = Nakl/ Nak.l [2] 
k,l 

in 
Here Nakl is the number of MD data points for geometry (k, I) pri 
at base pair step a and the sum is over all discrete geometrical res 
categories. Sample results for the optimal model in which 1 = 2 H( 
are presented in Table 2, which is published as supporting ori 
information on the PNAS web site, www.pnas.org. The MD a s 
results show essentially straight ApA steps (37) and a strong 
propensity for base pair roll toward the major groove at YpR 
steps (48), particularly CpA, and toward the minor groove at 
RpY steps. This behavior is generally consistent with that in 
observed in oligonucleotide crystal structures (37, 46) and the ge 
general sequence DNA bending model of Dickerson and co- pr 
workers (49). The corresponding probability that a given base to 

pair step a exhibits the geometry (k, I) is given by 

Pk,l(a) = NklI/ Nakl, [3] 
a de 

where the sum runs over all elements of the alphabet. The MD e0, 
results obtained for Pk,,(a) are provided in Table 3, which is tu] 
published as supporting information on the PNAS web site. The ?P 
MD probabilities Pa(k, 1) and Pk,,(a) in Tables 2 and 3 are used to 
to incorporate dynamical structure into dinucleotide step HMMs re] 
as described below. 

se( 

Hidden Markov Models. All HMM calculations in this project were n 
carried out with the program HMMPRO, generously made avail- va 
able by NetID, Inc. Use of HMMPRO in this project is based on fo 
an alphabet a consisting of the ten unique dinucleotide steps m< 
{ApA, ApT, ..., CpC}. All HMM connectivities are based on hit 
the linear architecture shown in Fig. 3, in which the states Si are cr3 
comprised of main states Mi, insert states Ii, and delete states Di, co 
namely, hy 

se( 
S = {start, M, .... M, M I, ... ., n+l, D1,...D, ,end}. [4] rel 

(C 
Based on the results of footprinting experiments (50), a site size pr 
with n = 36 encompasses the sequence length of CAP-related prm 
control elements. The HMM was trained on sixteen well char- de 
acterized CAP binding sites observed to have regulatory func- 
tionality by using 350 cycles of the full gradient descent online sp{ 
option to obtain the emission and transition probabilities. Both ho 
transmission and emission probabilities were found to be well set 
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nverged. The HMM at this point knows the probabilities for 
observation of each of the unique base pair step in the known 

iding sites, and is referred to as a sequence HMM. These 
luence-only-based HMMs (SEQ-HMMs) will score an un- 
own with respect to its probability of achieving the sequence 
aracteristics learned from its training set. 
Incorporating the MD description of sequence-dependent 
ucture into HMMs (denoted MDS-HMMs) is accomplished 
re by a two-step process in which the emission probabilities ei. 
. transformed first to emission probabilities e[kl and subse- 
ently, by a second transformation, to emission probabilities 

The e[kl are emission probabilities for a geometry (k, 1) and 
e'? are emission probabilities conditional on simultaneously 

isfying the probability model of structure from MD and 
)bability model of sequence trained into the HMM. In step 1, 

ei, are transformed by the Pa(k,l) of Table 2, 

eia*PJ(k, I) = e,ikl, [5] 

ere the e'kl refer to state i, step a, and geometry (k, 1). 
cause at this point we are not interested in the contribution 
'm step a but in the geometry (k, I) corresponding to that step, 
sum over all steps, 

e eiakl = ikl, [6] 

which the ekl is the geometry emitted by the state i and the 
me reminds us that the information on geometry was the 
ult of an MD transformation subsequent to HMM training. 
)wever, eki is indexed by geometry and not by step as in the 
ginal HMMs. To convert from structure to sequence, we apply 
econd transformation, 

eikl*Pkl(at) = eikl, [7] 

which the ekl are emission probabilities for symbol a, and 
)metry (k, 1) in state i. Note that at this point the emission 
)bability knows both step and geometry. Finally, we return this 
the step level by summing over geometries, 

eik!= ei= e [8] 
k,l 

fining a matrix E" of transformed HMM emission probabilities 
that incorporate the Boltzmann probability model of struc- 

e from MD by step. All probabilities are normalized at every 
portunity, but this is omitted from the equations in order not 
overly complicate the notation. The transition probabilities T 
nain unchanged. 
When a protein-DNA binding site shows a tract of strong 
luence consensus making physical contacts, an HMM model 
vhich the SEQ condition is applied locally is desired, with no 

?iation permitted in this region based on structure. Emissions 

steps outside the contact region are subjected to transfor- 
tion. For the 36-bp CAP DNA system, bases 10-15 are the 

;hly conserved TGTGA sequence motif known from the 
'stal structure (41) to be involved in specific intermolecular 
itacts between the CAP protein and DNA. The result is a 
brid HMM of sequence only in the consensus region and 

luence plus dynamical structure in the remainder of the site, 
erred to as a consensus sequence-dynamical structure hybrid 
SQ/MDS) HMM. This HMM scores unknowns based on 

)bability for consensus sequence in positions 10-15 plus a 
)bability of consensus sequence and structure in the remain- 
r of the query site. 
Vith all of the above in place, HMMPRO with any one of the 
:cified HMMs loaded as the active model can be used to score 
A, well a given "new" (i.e., unknown to the model) or query 
luence fits the established profile. All scores were generated 
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Table 1. Designations and details of hidden Markov models 2 

referred to in this study 

Model MDS-HMM CSQ/MDS-HMM 

#k #r 92% cut 88% cut 92% cut 88% cut 

4 x 0 1.8 0.0 9.1 9.6 E 
4 x 1 37.3 30.0 12.7 6.4 o 
4 x 2* 35.5 32.7 12.7 6.4 
4 x 3 60.0 60.0 14.5 9.1 1 
4 x 4 66.4 66.4 16.4 13.6 
4 x 5 74.5 61.8 21.8 20.9 
4 x 6 70.0 68.2 17.3 10.0 
4 x 7 75.5 70.9 17.3 10.0 Fig 
4 x 8 79.1 76.4 16.4 13.6 dir 
4 x 9 80.9 78.2 18.2 18.2 bin 
4 x 10 80.9 77.3 22.7 22.7 

D N C * * 2.7 2.7 Re 
A 

*Model selected for further study. pa 

ge 
st[ 

using the Viterbi algorithm in global mode. The scoring system hy 
was calibrated by scoring the "test set" consisting of 25 known S 
CAP binding sites [refs. 11, 50, and 51; including the 16 from the de 

original HMM training set (black bars) plus 9 not included H 
before (gray bars)]. plus 110 eukaryotic nonbinding sequences 
(white bars). A range of scores was obtained in this process, from th 
which a threshold value that provides optimal discrimination 
between sequences that do and do not exhibit the pattern sc( 
displayed by the training set. Because the optimal cutoff for each re, 
HMM is particular to the model, a standard way to compare the H1 
models was devised based on the success rate of finding 92% diP 
(missing two) and 88% (missing three) of the known binding (si 
sites. 32 

In comparing and assessing results from the various HMMs 
described above, it is important to determine how well an HMM co 

distinguishes between binding and nonbinding sites with respect a I 
to some threshold value in scoring (discriminatory ability), and er 
how successfully an HMM can locate binding sites not in the th 

training set (transferability). A well known problem arises with th 
HMMs when the training set is biased in favor of a particular pr 
feature. The resulting HMM has strong discriminatory ability se 

(with respect to this feature) but weak transferability-i.e., its th 

ability to recognize unknown binding sites will be compromised 
by overtraining (6, 10). Examining scores on a test set that de 
consists of both binding sites not in the original training set and an 

nonbinding sites can recognize this problem. wi 
wi 
49 

10o.o---------------0 sit 
cc co 

8.0 

6.0 

2.0 

-2.0: 

sequence 

Fig. 4. Log odds scoring of the MDS-HMM with four categories of direction 
and three categories of magnitude on the 25 CAP binding and 110 nonbinding 
sites. Of the 25 CAP binding sites, 16 are used fortraining. Forthe clarity of the 
figure, only results from 20 nonbinding sites are explicitly included, but all are 
well representative of the full complement. I 
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0 

0 

0- 

ding test set. Sites 11-15 are restricted to an HMM model of sequence only. 

wits 

total of 23 HMMs employing various choices of disposable 
rameters were tested so far in this project, and fall into the 
neral categories sequence only (SEQ), molecular dynamical 
ucture (MDS), and consensus sequence-dynamical structure 

brids (CSQ/MDS), as defined in the preceding section. The 
Q-HMM serves as a control. The test set was constructed as 
;cribed above and scored with the MDS-HMM. Details of the 

tiMs are provided in Table 1. 
Fhe results are presented in Figs. 4-6. For clarity only 20 of 

110 nonbinding sites considered are included, but these are 
11 representative of the entire set. Two thresholds, which 
)red correctly 92% and 88% of the known binding sequences, 
pectively, were considered. The scoring based on the MDS- 
Q MM 4 x 2 is shown in Fig. 4. This model, based on four 
,isions of roll/tilt orientations and three divisions of magnitude 
aril, medium, and large), scored the test set with 35.5% and 

.7% error under the respective thresholds. 
We proceeded to improve the HMM by restricting to sequence 
nsensus only at positions 10-15 as described above, producing 
2SQ/MDS model. With this information added, the scoring 
or was reduced to 12.7% and 6.4% for the 92% and 88% 
esholds, respectively (Fig. 5). Thus, as expected, restricting 
region where specific contacts are required between the CAP 

ntein and its DNA binding site to a probability model of 
Wuence information improved the discriminatory abilities of 

HMM. 
The level of resolution to be applied to the magnitude of 
viations in the DNA structures was explored by sensitivity 
alysis. The CSQ/MDS models with small and large (4 x 1) and 
th small, medium, and large magnitude (4 x 2) performed 
th 6.4% error at the 88% threshold. At a resolution level of 
;, the percentage points attributed to a single known binding 
e, exploratory models with four, seven, and eight magnitude 
mponents show comparable discriminatory ability in scoring 

21 

19 

sequence 

:ig. 6. Log odds scoring of the SEQ-HMM on the CAP binding test set. 
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protein binding and nonbinding sites in the test sequt as well. The 

ave 
Fig. 7. Log odds scoring results on (A) a purposely overtrained SEQ-HMM of 

compared to (B) a corresponding MDS-HMM. See text for details. CO] 
trii 
DP 

protein binding and nonbinding sites in the test set as well. The 
digitization of magnitude into three divisions seems the most we 
reasonable compromise at this point. co] 

Results on scoring the test set based on sequence only dyi 
(SEQ-HMM) were obtained as a control. It scored known tra 
binding sites in the training set significantly better than those in the 
the test set (Fig. 6), clear indication of overtraining. The str 
corresponding MDS-HMMs score binding sites in the training siz 
and in the test set at a similar level (for example, Fig. 5), en 
presumably as a consequence of a broader definition of consen- de; 
sus (sequence plus structure). To elucidate this point, a pur- str 
posely overtrained model problem was constructed. Seven of the ma 
original sixteen sequences were arbitrarily chosen and used to tifi 
train a SEQ-HMM. Applied to the test set, the resulting HMMs prc 
exhibited errors of 35% and 30% for 92% and 88% of the binding 
sites found, respectively. This SEQ-HMM was transformed using ex] 
the MD results into an MDS-HMM and tested (Fig. 7). The be 
scoring improved markedly, to 8% and 4% false positives at the of 
two levels, indicating that the MD transformation results in sei 
substantive difference in the ability of an HMM to successfully the 
locate binding sites. tei 

ex; 
Discussion sc< 
The results of the preceding section indicate that HMMs based ea 
on probabilistic roll/tilt dinucleotide models of sequence- de 
dependent DNA structure have a capability to discriminate fo 
between known CAP binding and nonbinding sites and to predict ph 
putative CAP binding sites in unknowns. Restricting HMMs to str 
sequence in regions of high consensus in which the protein makes 
base-specific contacts further improved the discriminatory ca- wa 
pabilities of the HMMs. The incorporation of dynamical struc- Pu 
ture in HMMs and thereby introducing a broader definition of co 
consensus was shown to improve the transferability of the on 
HMMs for a case in which sequence-only HMMs were over- inc 
trained. In the following, we discuss the approximations and sc( 
sources of uncertainty in the method as implemented, and also in} 
further implications and assessment of the results. pi 

The key operational quantities in MDS-HMM methodology sec 
are the transformed emission probabilities E' and E". The fu 
transformations per se, Eqs. 5 and 7, involve a product of re: 
probabilities, and implicit in this step is that sequence and ex 
dynamical structure are independent events. After the first re; 
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Fig. 8. CSQ/MDS-HMM log odds scorings of the E. coli genome. 

nsformation process is complete (Eq. 6), the alphabet corre- 
)nding to the emission probabilities is that of dynamical 
icture (k, I) for each base pair in the site. This is unwieldy for 
)ring per se, and resolution of this requires the second trans- 
mation step, Eqs. 7 and 8. The summations by which the 
nsformed emission probabilities are reduced, Eqs. 6 and 8, are 

,raging procedures-i.e., effectively integrations over aspects 
structure. MDS-HMMs thus seek consensus in a way that 
nbines the known sequence binding characteristics with in- 
isic dynamical structure characteristics of the uncomplexed 
{A in whatever way this might contribute to binding. 
)ur training set in this study is of course relatively small, but 
feel the results obtained are such that at least provisional 

iclusions are justified. The value added from incorporating 
lamical structure is evident most clearly in the improved 
nsferability of the transformed models, which we attribute to 

expanded definition of consensus to include dynamical 
ucture as well as sequence. Because any training set of finite 
e engenders some degree of overtraining, it is especially 
:ouraging to find from our results on the model problem 
;cribed in the previous section that incorporating dynamical 
ucture appears to provide some compensation. The transfor- 
tion procedure thus results in an improved HMM for iden- 
cation of any DNA element characterized by its dynamic 
)perties. 
)ne advantage of this approach is that the need for any 
)licit consideration of phenomena such as intrinsic curvature, 
iding, flexibility, bendability, or induced fit is avoided. Each 
these "modelistic" terms is not well defined in an operational 
lse (D.L.B., unpublished observation), and as a consequence 
:re is some confusion in the literature about what each of the 
ms really signifies at the level of dynamical structure. For 

tmple, the trinucleotide DNase and nucleosome positioning 
les used to derive DNA bendability do not correlate well with 
:h other (D.L.B., unpublished data). In this project, sequence- 
pendent dynamical structure is simply defined in probability 
m with respect to B-form DNA reference state, based not on 

enomenological definitions but on the calculated dynamical 
ucture and Boltzmann statistical mechanics of the system. 
As for a higher-order demonstration case, the E. coli genome 
s obtained from PubMed (http://www.ncbi.nlm.nih.gov/ 
bMed/) and converted from base pairs to base pair steps. The 
nverted genome (4.6 Mb) was scanned with the various HMMs 

a sliding window of 36 steps moved in single-base-pair 
:rements sequentially through the genome. Each fragment was 
)red and compared based on the previously established scor- 
;scale. The results are shown in Fig. 8. The results identify a 
lusible number of putative binding sites. However, one seeks 

luences that not only bind protein, but also have a regulatory 
iction. False regulatory sites could arise by chance or be 
nnants of evolutionarily extinct genes. To be useful, an 
panded protocol should include information about how far the 
;ulatory element is located in sequence space with respect to 
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the beginning of the ORF. In some cases, genes are already sp 
annotated, but ORF-predicting programs are also currently tic 
available (52), some of which are tailored to specific organisms. H 
System-specific searching could be achieved by the use of cc 
additional MDS-HMMs with complex architectures allowing for H 
the different positions of the binding site with respect to the of 
transcriptional initiation site, and in conjunction with in vivo to 
expression data in the form of microarray analysis, could provide d( 
a method for predicting groups of genes that are regulated by the ac 
same transcription factor. te 

cl 
Summary and Conclusions cf of 
Boltzmann probability models of DNA sequence-dependent ag 
structure from MD simulations on a set of oligonucleotides have d( 
been incorporated into HMMs, resulting in a bioinformatics tool cc 
that can recognize molecular structural signals as well as se- th 
quence in protein DNA binding sites on a genome. The binding ge 
of CAP to cognate DNA sequences served as a well character- at 
ized model system for demonstrating and testing of the method, 
and HMMs based on MD were used in an analysis of the E. coli of 
genome. The results indicate that HMMs based on probabilistic 
roll/tilt dinucleotide models of sequence-dependent DNA struc- Di 
ture have a capability to discriminate between known CAP re 
binding and nonbinding sites and to predict putative CAP (t( 
binding sites in unknowns. Restricting HMMs to sequence only Tr 
in regions of high consensus in which the protein makes base GJ 
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ecific contacts further improved the discriminatory capabili- 
;s of the HMMs. The incorporation of dynamical structure in 
MMs and thereby the introduction of a broader definition of 
nsensus was shown to improve the transferability of the 
MMs. Collectively, these results provide supportive evidence 
a role for molecular geometry as well as sequence in regula- 

ry mechanisms. The method described is readily extended to 
finitions of sequence-dependent DNA structure involving 
ditional helicoidal parameters, and to include sequence con- 
xt effects with trinucleotide or higher-order models. In con- 
ision, we note that however encouraging one finds the results 
this study, this is not an unequivocal proof of concept because 
reement or plausible behavior compared with experiment 
)es not prove a model per se. The proposed methodology has 
nsiderable potential applications in bioinformatics beyond 
ose described herein, but it is not yet possible to say how 
neral these results are. In particular, the issues we have raised 
out overtraining (i.e., developing a proper training set with all 
tentially interesting characteristics included) and robustness 
the method will require subsequent detailed and critical study. 
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