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ABSTRACT The A-to-B form transition has been examined in three DNA duplexes, d(CGCGAATTCGCG)2, d(CGCGAATTGCGC),
and d(CGCAAATTTCGC), using circular dichroism spectroscopy, ultraviolet resonance Raman (UVRR) spectroscopy, and
molecular dynamics (MD) simulation. Circular dichroism spectra confirm that these molecules adopt the A form under conditions
of reduced water activity. UVRR results, obtained under similar conditions, suggest that the transition involves a series of inter-
mediate forms between A and B. Cooperative and distinct transitions were observed for the bases and the sugars. Independent
MD simulations on d(CGCGAATTCGCG)2 show a spontaneous change from the A to B form in aqueous solution and describe a
kinetic model that agrees well with UVRR results. Based on these observations, we predict that the mechanism of the transition
involves a series of A/B hybrid forms and is sequential in nature, similar to previous crystallographic studies of derivatized
duplexes. A simulation in which waters were restrained in the major groove of B DNA shows a rapid, spontaneous change from B
to A at reduced water activity. These results indicate that a quasiergodic sampling of the solvent distribution may be a problem in
going from B to A at reduced water activity in the course of an MD simulation.

INTRODUCTION

The B form of DNA is well known to be predominant in

biological systems. However, conformational changes from

B in the direction of A DNA are implicated in protein-DNA

and drug-DNA interactions, and there is leading evidence for

a functional role for A as well as B forms in genome structure

and function (1). The A-to-B transition in DNA has also

served as a prototype case for testing out and validating

empirical energy functions and force fields used in molecular

dynamics simulations on nucleic acids (2–4). A number of

recent experimental (5–8) and theoretical (4,9–12) studies

have reported on this system. Most studies to date have focused

on the preferential stability of A and B DNA as a function of

water activity and salt concentrations, whereas the mecha-

nism of the B-to-A transition has received less attention.

Unique new information on this problem can now be ob-

tained from ultraviolet resonance Raman (UVRR) spectros-

copy, which monitors the local structures of individual

nucleotide bases in a sequence. Molecular dynamics (MD)

simulations can provide a detailed computational model

for the conformational change, which must of course be ex-

perimentally validated. We report herein a combined exper-

imental/theoretical study of the B-to-A transition in selected

DNA oligonucleotides based on UVRR spectroscopy and

MD computer simulation. The particular objective of this

study is to elucidate base-pair sequence and structural effects

on the transition mechanism. UVRR spectroscopy has been

applied to explicitly examine different base types through the

intensity and frequency of their vibrational modes as a

function of water activity.

Experiments were carried out on three dodecamer se-

quences, d(CGCGAATTCGCG), d(CGCGAATTGCGC),

and d(CGCAAATTTCGC). Corresponding MD simulations

including water and counterions performed on d(CGCGA-

ATTCGCG) with an A-form initial structure and the spon-

taneous transition of the A- to B-form dodecamer during the

initial phase of the MD simulation provides a theoretical

model of the transition mechanism (Fig. 1). The essential

results of the experimental and theoretical studies are in close

accord, and are found to support the idea of a sequence-de-

pendent, sequential mechanism for the transition rather than

a concerted, all-or-none mechanism. Detailed analyses of

DNA structures and solvation obtained from the MD simu-

lations provide further information leading to an improved

understanding of the transition mechanism. In addition, some

new insights into sampling issues in obtaining conforma-

tional transitions in MD on DNA for mixed solvent systems

have been obtained.

BACKGROUND

The structural difference between B and A forms of DNA

resides essentially in the sugar puckers (f) and the helix-base

parameters x-displacement (XDP), inclination (INC), and

slide (SLD), according to the definition of these parameters

(13). In B DNA the nucleotide basepairs are perpendicular to

the helix axis (INC ¼ 0) and centered (XDP, SLD ¼ 0), and
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the sugar pucker is C29-endo. In the A form, the basepairs are

tilted (INC¼ 20�) such that they are displaced from the helix

axis by �4.0 Å, and the sugar pucker is C39-endo.

DNA is unique in the extent to which its structure depends

on solvation. The early fiber diffraction experiments that

provided experimental data crucial to the discovery of the

double helix also revealed that DNA structure was sensitive

to the relative humidity of the sample fibers (14). The B form

is stable at relative humidities of 95% and the A form is

preferentially stabilized below 74%. Subsequent fiber dif-

fraction by Arnott and co-workers (15) elucidated the mo-

lecular structures of the canonical B and A forms of DNA.

The preferential stability of B- and A-form DNA in solution

was first reported by Ivanov and co-workers (16) based on

CD spectroscopy, and was found to depend on water activity

in a manner that parallels the results on fibers. Malenkov et al.

reported the B-to-A transition to be cooperative (17).

There has been considerable research into the forces in-

volved in the preferential stability of right-handed DNA

helices and the A-to-B transition. Solvent accessibility (18),

base-stacking interactions (19), the economics of phosphate

hydration (20), hydrophobic pressure, enthalpic stabilization

of B form by the minor-groove spine of hydration (21,22),

and electrostatic effects associated with the explicit organi-

zation of mobile counterions in the vicinity of the polyanionic

double helix (23–26) have all been invoked as plausible and

possible explanations. Based on analysis of MD simulation

trajectories, Jayaram et al. (27) proposed that the molecular

origins of the conformational preferences of A and B DNA in

water and 85% EtOH lie primarily in the differential free-

energy contributions from interphosphate repulsion, coun-

terion condensation, and solvation.

Recently, Vargason et al. (8,28) reported a crystallo-

graphic map of the conversion of B to A DNA based on a set

of 13 crystal structures of d(GGCGCC), with various struc-

tural intermediates trapped by methylating or brominating the

cytosine bases. This study provided a model for the B-to-A

conformational transition in terms of a set of distinct con-

formational intermediates, each of which is an equilibrium

state with respect to the free energy of the particular crystal.

The duplex in some instances was indicated to be partly A

form and partly B form, depending on local sequence com-

position, and some of the intermediate structures bear little

resemblance to either the starting or ending states. If the

mechanism of the transition can be successfully modeled

based on these intermediate structures, the conversion of

SLD precedes the change in base-pair inclination in going

from B to A, and changes in XDP occur continuously. In

these results, sugar puckers show a reasonably sharp transi-

tion point from B-like C29-endo to A-like C39-endo structures

(with some intermediate structures exhibiting a mixture of

C29- and C39-endo-type sugars). In the intermediate structures,

an extension and unwinding of the helix occurs along with

the change in sugar pucker. It remains to be established

whether these results from crystallography carry over from

equilibrium states to dynamics and are applicable to the so-

lution as well as to the crystalline state. Experimental data on

the dynamics of the B-to-A transition are relatively sparse. A

study by Jose and Porshke (29) reports on the dynamics of the

A-to-B transition based on stopped-flow, electric-field-jump

experiments. They report time constants for the transition in

the range of 10 ms, and present evidence for a significant

activation-energy barrier in going from B- to A-form DNA.

A number of CD and related studies on DNA have been

reported which characterized the sequence dependence of the

preferential stability of A and B forms of DNA (20). In gen-

eral, ApA and ApT steps are relatively rigid and resist tran-

sition from B to A, and the B/A transition is viable only for

FIGURE 1 Structural representation of the d(CGCGAATTCGCG)2 DNA sequence. (a) Canonical B-form DNA structure. (b) An ensemble of structures

derived from a 5-ns-long MD simulation starting from the canonical B-form structure. (c) An ensemble of structures derived from a 5-ns-long MD simulation

starting from the canonical A-form DNA structure. (d) Canonical A-form structure. The nucleotides are color coded as follows: red, adenine; blue, thymine;

green, guanine; and yellow, cytosine.
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sequences with a sufficient number of GC basepairs (30,31).

Similarly, conversion to the A form using Co31(NH3)6 re-

quires GpG steps and has not been demonstrated with se-

quences containing a majority of AT basepairs (25,32). As

noted above, the B form is favored under conditions of high

water activity in solution or high relative humidity in fibers.

When the water activity is lowered, or the relative humidity of

a DNA fiber is ,;75%, B-form sequences convert sponta-

neously to A form. Several groups (33,34) have examined the

experimental data on the preferential stability as a function of

sequence and B/A philicity has been expressed based on di-

meric and trimeric base-pair steps. It is important to note that

the solution structures of the A- and B-DNA endpoints of the

transition are expected to contain some structural differences

relative to the ideal canonical A and B forms of DNA inferred

from fiber diffraction (35).

In addition to CD, infrared (36–38), and Raman (5,39)

spectroscopic methods have been applied to the study of

B- and A-form DNA. Raman spectroscopic markers for the

B and A forms of DNA are well established (5,39). Certain

structural parameters of DNA can be obtained from these

methods, particularly the configuration of the sugar rings, the

angles of phosphates, and overall base geometries. A disad-

vantage of these methods, including CD spectroscopy, is that

the information on sequence dependence cannot generally be

resolved. NMR studies involving 2D nuclear Overhauser

effect spectroscopy do not resolve the DNA helical param-

eters, but the recent addition of reduced dipolar coupling has

measurably improved these determinations. However, elu-

cidation of a reliable molecular structure from NMR data

remains challenging.

UVRR has introduced some new dimensions to the study

of nucleic acid structure (40–42). The resonance enhance-

ment intrinsic to UVRR spectroscopy makes it possible to

selectively investigate the behavior of individual types of

nucleotide bases and, in the case of propitious sequences,

individual bases. As a consequence of this resonance selec-

tive enhancement and detection, stacking interactions and

H-bonding of relevant functional groups can be attributed to

distinct residue types. Thus, UVRR spectroscopy can be a

source of more detailed information regarding local structure

of DNA as a function of sequence and conformation.

In previous studies, the UVRR method has proven useful

in evaluating the structure and stacking of DNA molecules,

cation coordination, and H-bonding (43,44). From mea-

surements of the premelting transition in DNA A-tracts, the

relative strength of cross-strand 3-centered H-bonds could be

determined (45). More recently, UVRR spectroscopy has

been applied to the study of protein-DNA interactions, and

subtle changes in DNA structure associated with protein

binding were readily detected (46–48).

MD computer simulation including explicit consideration

of solvent has been applied extensively to model the dynamic

structure of DNA oligonucleotides (Fig. 1) (49–54). MD

simulations are found to be generally in close accord with

NMR-derived solution structures (7,55–59). MD simulations

have provided new insights into the solution structures of

these molecules, which include essentially straight A-tracts

(60), highly flexible purine-pyrimidine steps that can serve

as a locus for axis bending (56), and support for the ‘‘non-

A-tract’’ model of DNA curvature (49). MD studies of se-

quence effects on B-form DNA structures has been advanced

by recent simulations on all 136 unique tetranucleotide base-

pair steps (61,62) and has led also to improvements in nucleic

acid force fields (63).

The interconversion from B to A DNA has been investi-

gated via molecular dynamics simulations as described in

several recent articles (2,4,11,12,64). Cheatham and Kollman

(2) were the first to report MD studies of A- and B-form

conformational stability in explicit solvent. Subsequently,

Sprous et al. (4) reported MD simulations on d(CGCGAA-

TTCGCG)2 in A and B forms. The motivation for these

studies was directed more toward assessing the performance

of force fields, with the A-to-B transition as a prototype case.

Both Cheatham et al. (2) and Sprous et al. (4) independently

observed that in MD based on the AMBER parm94 force

field, B-form DNA was stable in water and the A form was

stable in a mixed ethanol/water solvent with reduced water

activity. The MD model A-form DNA in aqueous solution

was observed to convert spontaneously into the B form.

However, both studies reported that B-form DNA did not

spontaneously convert to the A form in the low-water-

activity mixed solvent at 300 K. This was initially addressed

as a force-field limitation and a subsequent local alteration of

the force field was designed to make this transition more

favorable (65). However, the performance of the resulting

MD model DNA deteriorated with respect to other structural

features. In these studies, the expectation of a B-to-A tran-

sition at low water activity was based on generic patterns

of environmental effects on DNA conformational stability

rather than specific behavior of a DNA sequence and the

question of whether in fact this sequence was observed ex-

perimentally to form A DNA at low water activity was raised

by Pichler et al. based on infrared studies of hydrated films

(38). The exact solvent conditions that favored A- or B-form

DNA for this sequence were not well delineated. Elucidation

of these issues, as well as the mechanism underlying them,

motivated the study described here.

Recently, Pastor studied the B-to-A transition in a TATA

box sequence using MD based on the CHARMM nucleic

acids force field (12) and found evidence in support of a

sequential ‘‘slide first, roll later’’ mechanism that is opposed

by DNA electrostatics and favored by increasing condensa-

tion of sodium ions. The latter phenomenon was noted earlier

by Sprous et al. (4) and figured significantly in the free energy

calculations of Jayaram et al. (27), with cross correlations

between various theoretical studies providing some enhanced

validation of the results. Banavali and Roux (64) recently

reported a free energy profile for the B-to-A transition of

d(CTCGAG) in water with minimal salt based on the
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CHARMM force field. The free energy difference between

canonical A and B forms was found to be at least 2.8 kcal/

mol, and the simulation with root mean-square deviation

constraints sampled a continuum of hybrid structures with no

well defined local minima between the two forms. The details

of this calculation raise a number of additional issues, since

some base-flipping events and other effects were noted that

are presumably artifacts. Also the MD structures of A and

B DNA deviate significantly from the idealized canonical

forms, which are not appropriate endpoints for a determina-

tion of the free energy difference in solution.

In this study, the mechanism of the A-to-B transition is

revisited to address the relative importance of base step,

solvation, and electrostatics in the transition. The combined

methodologies of UVRR spectroscopy and MD simulation

provide new insights into the transition, since the UVRR

results identify regions of change and stability, and the MD

simulations provide a structural basis for interpretation of

Raman data. These results particularly point to a sequential

mechanism for the transition, in which reorganization of

water plays a central role.

METHODS

Oligonucleotides

Experiments were carried out on three dodecamer sequences, d(59-CGCG-

AATTCGCG-39), d(59-CGCGAATTGCGC-39), and d(59-CGCAAATTT-

CGC-39), as a function of water activity. The 59 to 39 sequences are shown;

however, all experiments were performed on duplexes with the appropriate

complementary strands. Oligonucleotides were synthesized in 1-mmol

quantities (Integrated DNA Technologies, Coralville, IA). The deblocked

and desalted oligomers were purified by polyacrylamide gel electrophoresis.

Purity was checked by analytical gel electrophoresis. For all spectroscopic

experiments, samples were dialyzed against a buffer containing 0.1 M NaCl

and 0.67 mM NaPO4, pH 7.0. For the trifluoroethanol (TFE) experiments,

only buffer was used, as minimal salt concentrations were chosen to promote

oligonucleotide solubility. Duplex samples were prepared by heating to 90�C

in a water bath for 5 min, followed by slow cooling to room temperature.

Annealed samples were subsequently diluted 10-fold with either TFE or

buffer, to produce two 1 3 10�4-M samples (strand), one in buffer (0% TFE)

and one in 85% TFE.

CD spectroscopy

CD experiments were performed using a Jasco Spectropolarimeter J-810

with a six-cell Peltier temperature controller. Spectral scans were measured

from 300 to 190 nm, with a scan speed of 20 nm/min and an 8-s response

time. Three scans were averaged at each molar hydration point.

UVRR spectroscopy

A Q-switched, Nd:YLF pumped Ti:sapphire laser system (Quantronix, East

Setauket, New York) was used to generate the excitation wavelengths, by

frequency-tripling or quadrupling the output of the Ti:sapphire using barium

borate crystals, as previously described (43,45). Samples were contained in a

3 3 3-mm quartz cuvette and continuously stirred for the duration of the

experiment. All spectra were collected at 15-min intervals in separate cycles;

if any degradation in the sample was observed, that scan was discarded. The

0% and 85% TFE spectra arise from 2 h of averaged data, and all other points

result from 1 h of averaged data. Spectra were acquired with a slit width of

170 mm and calibrated against ethanol, acetone, and pentane. Relative

spectral shifts are accurate to 0.25 cm�1 and absolute frequencies are accu-

rate to 1 cm�1. Samples were examined at room temperature and were

normalized to the TFE band occurring at 1459 cm�1. Curve fitting of the

spectra was accomplished with a mixed Lorentzian and Gaussian function,

using constant peak frequencies. All data manipulation and analyses were

performed using GramsAI (ThermoGalactic, Salem, NH).

Percent relative molar hydration (MH) was calculated as the mole frac-

tion of water at each TFE concentration using the equation XH2O ¼
ðnH2O=ðnH2O1nTFEÞÞ3100; where n refers to the number of moles of water

or TFE. Concentrations of DNA and salt were neglected, as they remained

constant. Transition midpoints were treated independently and analyzed

using a Boltzmann function with Origin v. 6.0. (MicroCal, Northampton,

MA): y ¼ ððA1 � A2Þ=11eððx�xoÞ=dxÞÞ1A2:

Molecular dynamics simulations

Four simulations on the duplex d(CGCGAATTGCGC) are considered here.

Simulations on both the B and A forms of this sequence reported earlier were

all redone and extended to much longer trajectories. Two of these involve the

simulation of the canonical A-form structure in an ;85% (v/v) ethanol/water

mixture, i.e., ;30% relative MH, and in water, and the third and fourth are of

the canonical B-form structure in water and at 30% MH. Considerable new

analysis of solvation was carried out for this project. Details of the calcula-

tions are as follows: The AMBER utility NUCGEN was employed to create

the canonical A- and B-DNA starting structures based on fiber diffraction

data (35). For simulations in the ethanol/water mixture, the united-atom

OPLS-ethanol model (66), which is computationally effective and closely

approximates the correct density, heat capacity, and heat of vaporization

observed for ethanol (67), together with the TIP3P water molecules, was used

at a concentration of 30% MH relative to ethanol. The simulation protocol is

similar to those reported earlier (4,9). A ‘‘biphasic’’ initial configuration, as

described by Cheatham et al. (9), was constructed by adding TIP3P water

molecules in the first 6 Å from the DNA surface followed by the requisite

number of ethanol molecules to make up the 30% MH ethanol/water solvent

mixture. For the simulations in water, the TIP3P (68) water model was

employed for the solvent such that the solvent extends up to 13 Å from the

surface of the solute in all the directions.

Electroneutrality was established by adding 22 sodium cations (69) to the

system. The positions of the ions were randomized such that they were at

least 5 Å from the DNA and 5 Å away from each other. All MD simulations

were performed in TPN ensemble using AMBER version 7 or 8 and the

parm94 version of the Cornell et al. force field (70), and employing the

particle-mesh Ewald procedure (71,72) for the treatment of long-range in-

teractions. The MD protocol of minimization, heating, equilibration, and

production dynamics was carried out in the following steps. Minimization

involved 100 steps of steepest descent followed by 250 steps of conjugate

gradient method. Heating from 0 to 300 K was done over 10 ps, followed by

equilibration at 300 K for an additional 40 ps with SHAKE constraints (73).

During the equilibration phase, a flat well restraint on the C19-C29-C39-C49

torsion was introduced to maintain the angle between 30� and 40� in the

A-form structure, set at 25 kcal/mol/deg2 for the first 30 ps and then reduced

to 5 kcal/mol/deg2. The production simulations were pursued without any

restraints for simulation times of 10 ns and longer using 2-fs time steps.

The analysis of the composition of a molecular fluid requires an inter-

pretation of the statistical distribution functions in structural and energetic

terms. A theoretical approach for this problem was mapped out several years

ago for pure liquids by Ben-Naim (74) based on the generalized molecular

distribution functions and the closely related quasicomponent distribution

function involves developing the distribution of particles with certain well-

defined values of a compositional characteristic on the statistical state of the

system (75). The basis for a general compositional analysis of the statistical

state of molecular fluids must be a unique definition of the local solution

260 Knee et al.

Biophysical Journal 95(1) 257–272



environment of each identifiable substructure-atom, function group, or

subunit of the solute. The proximity criterion accomplishes this by uniquely

identifying each solvent molecule with a well-defined solute entity in each

configuration. The proximity analysis partitions the solvent according to the

proximal solute atoms and calculates distribution properties for each parti-

tion. The solute atoms can be partitioned independently or into functional

groups defined by their chemical identity. All the proximity calculations

were performed using the MMC program (76). The solvent-accessible sur-

face area calculations on the snapshots in the MD trajectory have been

performed using the program SurfRacer 3.0 (77). The atomic radius set re-

ported by Alden and Kim (18) was employed. A spherical probe radius of

1.4 Å corresponding to the regular radius of a water molecule was employed

in all the solvent-accessible surface area calculations.

RESULTS

CD spectra

CD spectra for all three duplexes considered in this study

were examined to make sure they each exhibited the expected

preferential stability of the B and A forms at high and low

water activities and were suitable for our study. The CD

spectrum of the d(CGCGAATTCGCG)2 duplex is shown as a

function of increasing relative percentages of TFE in Fig. 2 a.

At relatively low concentrations of TFE (.77% MH), the

spectrum exhibits a maximum at 283 nm and a minimum at

252 nm of comparable magnitude. These conservative fea-

tures above 220 nm are consistent with those previously ob-

served for B-form DNA (78). As the TFE concentration is

increased, the maximum at 283 nm decreases in intensity and

shifts to 270 nm (Fig. 2, inset). In previous work, spectro-

scopic features of A-form DNA at low ionic strength included

a peak at 270 nm, the shape of which was strongly sequence-

dependent (16,31). To ensure that the transition was not

associated with the palindromic nature of the d(CGCGA-

ATTCGCG) sequence, similar CD studies were performed

with other DNA dodecamers, which are of similar base

composition but different sequence. For all duplexes exam-

ined, a decrease in ellipticity at 250 nm coupled with a shift in

maximum to 270 nm is observed with increasing concentra-

tions of TFE (Fig. S2 in Supplementary Material, Data S1).

The magnitude of the ellipticity at 270 nm measured at 41%

MH lies in the 10–20 De (M�1cm�1) range. This is in good

accord with previous measurements of the B-to-A conversion

in TFE, in which peaks of similar ellipticity were observed at

270 nm and were identified as being diagnostic of the A form

(16,31). For all duplexes examined, the spectrum obtained at

41% MH exhibits an increase in ellipticity at 270 nm, a

decrease at 250 nm and an increase at 210 nm relative to the

B-form spectrum. These spectral features have been previ-

ously assigned to A-form DNA (33,78) and indicate that the

d(CGCGAATTCGCG)2 duplex has adopted the A form with

increasing concentrations of TFE.

The CD intensity at 252 nm for d(CGCGAATTCGCG)2 is

plotted as a function of molar hydration in Fig. 2 b. The

change in intensity occurs over a relatively narrow range of

hydration, consistent with previous studies. The results in-

dicate that the global change in conformation from B- to

A-form DNA occurs at 65% molar hydration. The d(CGC-

GAATTGCGC)2 duplex, which is exactly the same base

composition as the d(59-CGCGAATTCGCG-39) duplex, has

a transition midpoint of 68.3%, whereas the d(59-CGCAA-

ATTTCGC-39) duplex exhibits a transition midpoint at

63.2% molar hydration (Fig. S2 in Data S1). As expected,

the increase in number of AT basepairs in going to

d(59-CGCAAATTTCGC-39) results in a transition midpoint

at a significantly lower level of hydration, that is, the more

AT-rich sequence converts to the B form at lower water ac-

tivity, consistent with conventional wisdom on the relative

propensities of the basepairs to form A- and B-form DNA. In

summary, the CD studies indicate that A/B interconversion

does occur in each of the sequences studied. The average

transition midpoint is consistent with the general idea of

the preferential stability of B form at high water activity and

A form at low water activity and of A/B philicity as a function

of sequence.

UVRR spectra: ribosyl conformation

Three different excitation wavelengths were used to gain

a molecular picture of the DNA oligonucleotides changing

from A to B form in solution (Fig. 3). To selectively moni-

tor the deoxyribose-phosphate backbone, an excitation

wavelength of 210 nm was used (43,45). At this excitation

wavelength, the peak intensities of ribose modes for dG res-

idues are preferentially enhanced (41,42). The vibrational

frequencies of ribose modes are sensitive to conformation,

with the C29-endo configuration associated with a peak at 685

cm�1 and the C39-endo configuration associated with a peak at

665 cm�1 (5,39). This feature is often used as an indicator of

DNA conformation, but the results presented below indicate

that ribose conformation does not necessarily reflect an

overall A- or B-form structure. In this work, we find that this

mode shifts to lower frequency as the relative hydration is

decreased (Fig. 3). A transition midpoint of 68.3 6 2.3% is

obtained from a plot of the frequency as a function of relative

hydration (Fig. 4); this value is within the range of that de-

termined by CD spectroscopy (see above) (Table 1).

To estimate the relative populations of the C29-endo and C39-

endo configurations, the Raman bands were fit assuming that

only these two components were contributing to the observed

band. This fitting indicates that even at 41.5% MH, the

population of dG ribose modes in the C39-endo configuration

is 94% and not 100% (Fig. 5 a). This reflects a situation

wherein the dynamic structure of the duplex in solution in-

volves both B-form and A-form ribose structures in the

Boltzmann ensemble. Because UVRR spectroscopy super-

imposes all dG ribose modes, it is not possible to distinguish

which individual ribose moieties have adopted the C39-endo

configuration at 41.5% MH and which ones have remained in

the C29-endo configuration. The sugar conformation of other
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bases cannot be examined because of spectral interference

from TFE bands.

UVRR spectra: base interactions

An advantage of the UVRR technique is the ability to se-

lectively enhance contributions from the different bases

through judicious choice of excitation wavelength. Thus, dG

residues are enhanced through an excitation wavelength of

240 nm and dA residues contribute strongly to the spectrum

when excited at a wavelength of 260 nm. Contributions from

dT bases are also observed using an excitation wavelength of

260 nm. Under these excitation conditions the modes that are

observed primarily arise from ring-stretching vibrations.

FIGURE 2 (a) CD spectra of d(CGCGA-

ATTCGCG)2 DNA at increasing percentage of

molar hydration. Inset shows an expansion of

the region between 230 and 300 nm. DNA

concentration was 100 mm (strand). (b) Inten-

sity at 252 nm plotted as a function of percent

molar hydration.

FIGURE 3 UVRR spectra of the se-

quence d(CGCGAATTCGCG), excited

at 210, 240, and 260 nm. Far left panel

shows an expanded view of the region

containing modes assigned to the dG C29-

endo and C39-endo sugar puckers. Spectra

are shown at 41%, 70%, and 100% molar

hydration. Vibrational modes referenced

in the main text are indicated on the

100% molar hydration spectra. Peaks

appearing at 1460 and 1283 cm�1 are

assigned to residual TFE modes present

in the spectra after subtraction. Each spec-

trum results from 1 h of acquisition.
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Because of the effect of Raman hypochromism, which is

directly related to absorption hypochromism, the intensity of

the base modes can be related to base-stacking interactions.

For all of the modes examined, the intensity of the modes

increases upon adopting the B form (Fig. 3). The increase in

intensity is attributed to a reduction in base-stacking inter-

actions because of the greater distance or rise in base steps

(3.4 Å for B vs. 2.8 Å for A) and the more pronounced helical

twist between base steps (36� for B vs. 33� for A) in B-form

DNA. The increased intensity upon adoption of the B form

has also been observed in other Raman studies of DNA

conformation (5,39,47).

The intensity changes of the 1362 and 1485 cm�1 modes

obtained with an excitation wavelength of 240 nm are shown

as a function of molar hydration in Fig. 4. Based on a com-

parison of the relative Raman cross sections (41,42,79), these

modes arise primarily from dG stretching motions rather than

dA residues because of the 240-nm excitation wavelength.

The mode occurring at 1362 cm�1 arises from dG C2¼N3-

C4-N9 stretching motions, with contributions from N7 ring-

stretching vibrations and the 1485-cm�1 mode arises from

C2-H and C8-H bending modes, coupled with C8-C9 stretch-

ing motions. Since these motions lie primarily in the plane of

the ring, the enhancement mechanism is associated with the

absorption of the base itself and changes in intensity can be

related to changes in hypochromicity associated with stack-

ing interactions. The transition midpoints obtained from the

intensity changes as a function of molar hydration yield a

value of 85 6 1.0% (Table 2). Interestingly, this transition

midpoint differs significantly from that obtained for the

change in ribose conformation and suggests that the base-

stacking geometry of the dG residues changes at a higher

molar hydration compared to the ribose.

Using an excitation wavelength of 260 nm, the intensities

of modes at 1332 and 1575 cm�1 can also be monitored as a

function of hydration (Fig. 4). These modes, which arise

primarily from dA residues at this excitation wavelength,

result from imidazole and pyrimidine ring-stretching vibra-

tions, respectively. The intensity change as a function of

molar hydration yields transition midpoints of 69% and 75%,

respectively. These midpoints are suggestive of a mean

transition midpoint for the AT basepair of 72% MH, which

differs significantly from that obtained for the ring-stretching

modes arising from dG residues (Fig. 4). Thus, these results

indicate that dA residues do not change their base-stacking

geometries under the same conditions as dG residues and that

the dA residues require significantly lower levels of molar

FIGURE 4 Plots of changes in (a) sugar pucker vibrational mode fre-

quency, (b) AT mode intensity, (c) GC mode intensity, and (d) dT carbonyl

mode frequency as a function of molar hydration, as observed by UVRR for

d(CGCGAATTCGCG)2. The left axis scale corresponds to the squares in

each plot, and the right axis scale to the stars. Transition midpoints and DDG

values for each component are reported in Table 2. Original data are shown

in Fig. 3.

TABLE 1 Relaxation times of some global

d(CGCGAATTCGCG)2 basepair-axis parameters and

pseudorotation phase angles

DNA Base tXDP tINC tPHA1 tPHA2

C1-G24 0.128 0.128 0.021 0.558

G2-C23 0.145 0.065 0.091 0.423

C3-G22 0.159 0.048 0.094 0.021

G4-C21 0.178 0.078 0.192 0.035

A5-T20 0.152 0.064 0.256 0.151

A6-T19 0.171 0.071 0.005 0.025

T7-A18 0.153 0.061 0.008 0.011

T8-A17 0.216 0.066 0.031 0.043

C9-G16 0.182 0.054 0.030 0.034

G10-C15 0.070 0.063 2.582 0.074

C11-G14 0.111 0.063 0.027 0.024

G12-C13 0.739 0.351 0.008 0.007

Average for G and C bases 0.141 0.062 0.502 0.102

Average for A and T bases 0.173 0.066 0.075 0.058

Total average 0.157 0.064 0.288 0.080

Parameters were calculated from the first-order exponential decay fit of the

x displacement (XDP), inclination (INC), and phase angle of sugar pucker

in strands 1 (PHA1) and 2 (PHA2).
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hydration to convert to the A form. For both base types, the

transition midpoints observed are at higher water activity

relative to that observed for the ribose conformation. These

findings are in good qualitative agreement with the structure

of the d(CCCCGGGG)2 duplex sequence determined by CD

and NMR spectroscopic techniques (6), in which the base-

stacking properties were found to be A-like and the sugar

pucker was observed to be B-like. The NMR-determined

structure was interpreted to be an intermediate in the A-to-B

transition (6).

UVRR spectra of the A and B forms of DNA also provide

some insight into the relative hydration of the grooves

through measurement of H-bonding strength. The relative

strength of H-bonding interactions is inferred from the car-

bonyl stretching frequency of relevant functional groups. A

decrease in frequency results from a reduction in the force

constant of the carbonyl bond and is correlated with increased

strength of H-bonding (45,80). The thymine C4¼O group

points into the major groove and is readily monitored using

an excitation wavelength of 210 nm (41,45). Under condi-

tions of increasing concentrations of TFE, the frequency of

the C4¼O shifts from 1662 to 1653 cm�1 (Fig. 4). The

downshift in frequency is indicative of stronger H-bonding in

A-form than in B-form DNA. Crystallographic structures

have revealed a more ordered water structure in the major

groove of A-form DNA, and the decrease in frequency of

the C4¼O is attributed to stronger H-bonding with locally

ordered water molecules. Examination of the MD simula-

tions and canonical structures also indicates that H-bonding

geometries of the A and B forms are not substantively

different.

In summary, the UVRR results make it possible to monitor

the ribose conformations, as well as the base stacking of dG,

dA, and dT. An examination of the series of equilibrium

states of the system as the relative hydration is increased

reveals that the sugar moieties change to C29-endo followed

by A- to B-type changes in base-stacking interactions. There

is evidence of stronger H-bonding to solvent in the major

groove of A-form DNA than in the B-form. The UVRR re-

sults thus support a cooperative but sequential mechanism for

the B-to-A transition, as opposed to an all-or-none, simple

two-state mechanism.

MD simulations

Since earlier reported MD involved relatively short trajec-

tories, MD simulations on B and A forms of d(CGCGAA-

TTCGCG) were extended to 60 ns and 20 ns, respectively.

The overall behavior of the extended simulations was es-

sentially similar to that reported (Fig. 1) (4), and provides a

more rigorous basis for detailed analysis of the solvation. The

MD simulation most relevant to the mechanism of the B-to-A

transition is a simulation on the d(CGCGAATTCGCG) du-

plex in aqueous solution, beginning with the sequence in the

canonical A form. A comparison of the canonical A- and

B-form structures with the ensemble of structures generated

by the MD simulations is given in Fig. 1. During the initial

phase of the MD, there is a rapid interconversion of the se-

quence from A- to B-form, and a detailed structural analysis

provides the MD-predicted mechanism. In going from A to

B, the sugar puckers and the helical parameter INC transition

to B-form values within 500–750 ps. The basepair dis-

placement XDP converts from A to B values in the 750–1250

ps time range. The A-to-B interconversion is complete by

1500 ps of MD, and the resulting B-form structure is quite

similar to that found in the simulation of the sequence in

aqueous solution that began with the canonical B form. This

finding agrees with experiment, i.e., the B form is the pre-

ferred conformation in aqueous solution.

To be more quantitative, we have monitored the relaxation

times of these properties in the course of the A-to-B transition

observed during the simulation starting with the A-form

FIGURE 5 (a) Population of C39-endo and C29-

endo ribose conformations determined from the

fitting of UVRR bands at 665 and 685 cm�1 (Fig.

3). (b) Normalized frequency of sugar puckers for

the d(CGCGAATTCGCG)2 sequence calculated

over the course of the 60-ns B-DNA simulation in

water and the 20-ns A-DNA simulation in 85%

water/ethanol.

TABLE 2 UVRR-observed transition midpoints and

DDG values for the d(CGCGAATTCGCG) sequence

Tm (% MH) DDG (kcal/mol)

Sugars

Dn 685 68.35 6 2.3 �3.02

Dn 1420 72.2 6 0.7 �3.05

AT

DI 1332 69.2 6 1.4 �3.03

DI 1575 75.3 6 2.5 �3.09

GC

DI 1362 84.6 6 1.1 �3.17

DI 1483 85.4 6 1.5 �3.18

T C4¼O 87.5 6 6.0 �3.19
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structure in water. The relaxation times are calculated on the

basis of exponential fit of the decay in the autocorrelation

function of these parameters (Table 2). Neglecting the outlier

observed in sugar pucker relaxation time of the G10 nucle-

otide, we observe that, on average, the sugar transition from

C39-endo to C29-endo conformations relax faster than XDP and

INC. With respect to sequence effects, the AATT tract con-

verts to B form first, followed at a later point by the GC tracts.

These observations are consistent with those obtained from

UVRR spectroscopy, described above, which indicate that

the mechanism of the A-to-B transition is sequential, with

sugars converting from A form to B form, followed later by

the changes in base stacking. The structure passes through

an A/B hybrid form, with the AT tract converting at lower

relative hydration than the GC tracts. The MD results point to

populations of mixed ribose conformation for A DNA in

ethanol and B DNA in water but also indicate that small

fractions of other ribose conformations, not resolved in the

UVRR spectra, may be present. Interestingly, MD simula-

tions predict that even A DNA in ethanol/water contains

;20% of the C29-endo configuration and that the ribose

conformation is more heterogeneous in this conformation

than in B DNA (Fig. 5 b). In summary, the MD and UVRR

results agree well on the issue of a sequential mechanism,

i.e., one in which changes happen in sequence as opposed to

‘‘all or none.’’ Since water activity is the agent of change, we

now look to the simulation results to obtain an understanding

of the manner by which solvation effects the transition.

Our analysis of solvation examines the general nature of

the A and B forms of d(CGCGAATTCGCG) based on cal-

culation of solvent accessibility, and is followed by a detailed

analysis of the MD results using the proximity method.

Calculations of the solvent-accessible surface area of the four

nucleotides in the A- and B-form structures, computed from

the MD trajectories, are shown in Fig. 6. The solvent ac-

cessibility analysis is broken down in terms of the constituent

atoms in the sugar, phosphate, and major and minor groove

regions. Although the grooves together contribute ;20% of

the net solvent-accessible surface area, the related change on

going from the A- to the B-form structures is large, and

comparable to that found for the phosphate and sugar groups

(Fig. 6 c). There is a net reduction in the solvent-exposed

surface area for both the AT and GC basepairs in the A-form

structures, compared to the B-form, consistent with the idea

of reduced hydration in A DNA. Moreover, the change in

solvent-accessible surface area for the two forms is distinctly

different for the AT and GC basepairs. Specifically, the sol-

vent accessibility of AT basepairs in the major groove in the

FIGURE 6 (a and b) Percentage composition of

the solvent-accessible surface areas of the G, A, C,

and T nucleotides in the MD simulation of the

central 10 basepairs of the CGCGAATTCGCG

sequence in A-form DNA (a) and B-form DNA

(b). (c) Difference in the average solvent-accessible

surface area (in Å2) between the A and B confor-

mations for the four nucleotides and the AT and GC

basepairs.

Mechanism for DNA A-to-B Transition 265

Biophysical Journal 95(1) 257–272



A-form structure is greatly reduced. This finding is indicative

of a higher level of water rearrangement in the immediate

proximity of the AT basepairs, compared to the GC base-

pairs, during the B-to-A transition. This finding is in good

qualitative agreement with experimental results, which indi-

cates that AT-rich regions convert from the A to B form at

a lower level of relative hydration. Thus, the differences in

accessible surface area for GC and AT basepairs can be

correlated with their relative differences in energy in the

transition, and these differences are reflected in the experi-

mental data.

In the B-form structures, phosphate groups are the most

solvent-accessible components of the nucleotides, contrib-

uting 49.5% of the total, followed by sugars at 30.5%. The

corresponding contribution of the phosphates and sugars in

the A-form structure is 47.25 and 34.25%, respectively. For

all the nucleotides, the solvent-accessible surface area of the

sugar and minor groove regions is larger in the A form, but is

consistently lower for the phosphate group and the major

groove. The hydrophobic sugar moieties are more solvent-

exposed in A-form structures, whereas the charged phosphate

groups experience decreased solvent exposure since the in-

terphosphate distance is only sufficient to accommodate one

water molecule. The increased accessibility of the surface to

the solvent is a result of the shallow nature of the minor

groove region in the A-form structure, whereas the con-

comitant decrease in major groove accessibility is a result of

the deeper, narrower groove dimension (81).

The details of the MD-calculated water structure around

the A and B forms of DNA have been examined based on

proximity analysis of water molecules in MD trajectories of

A-form DNA in an ethanol/water mixture and of B-form

DNA in water (82). The analysis is presented in Table 3 in

terms of the four structural moieties, i.e., sugar, phosphate,

and major and minor grooves, for each of the central eight

basepairs in the dodecamer DNA. In particular, we report the

volume of the first solvation shell, the corresponding coor-

dination numbers, and binding energies for the stable A- and

B-form structures. Since the ethanol/water mixture contained

528 water molecules, the number of water molecules closest

to that in the B-DNA simulation in aqueous solution was

included in this proximity analysis. The ions are assumed to

be part of the solute in the binding-energy calculations. The

first shell volume of the phosphate and major-groove func-

tional group proximity region is much smaller in the A-form

structure, whereas the sugar moiety has higher accessibility

in the A-form structure. This high accessibility of the sugar

moiety is likely to be an important factor in destabilizing this

structure in aqueous medium, in which the A-form sponta-

neously transitions to a B-form structure due at least in part to

hydrophobic pressure. The coordination numbers indicate

that the number density of water molecules in the proximity

region of the functional groups is much smaller in the

A-DNA structures. On average, 16 water molecules are co-

ordinated in the first two shells of the A-form structure,

compared to an average of 34 water molecules observed in

the B-form structure. The reported first-shell solvation en-

ergy is the interaction energy between the solute functional

groups and the water molecules in their corresponding

proximity region, averaged over the 5-ns MD trajectory. It is

interesting to note that although the average coordination

number is much lower, the average interaction energy of the

water molecules in the major groove of the A-form DNA

structure, especially in the central region, is more favorable

compared to the B-DNA trajectory structures. Localization of

sodium ions also occurs within the major groove of A DNA.

The localization of water is in good accord with Raman

spectroscopic results, which suggests that the water mole-

cules are more tightly bound in the major groove of A-form

DNA than in the B-form structure. The water molecules in

the first shell of the B-DNA structure are bound much more

strongly in the minor groove compared to the major groove,

which can be attributed to the presence of the conserved spine

of hydration. In the B-DNA structure, the proximity analysis

reveals that, on average, the GC basepairs bind to water

molecules more strongly than the AT basepairs, in accord

with experimental volumetric results (83).

DISCUSSION

The CD studies have established that A/B interconversion

does occur in each of the sequences studied. The average

transition midpoint is consistent with the general idea of

preferential stability of the B form at high water activity and

of the A-form at low water activity, as well as of A/B philicity

as a function of sequence. The UVRR results make it pos-

sible to monitor the ribose conformations, as well as the base-

stacking of dG, dA, and dT. Examination of a series of

equilibrium states as a function of increasing hydration shows

that the sugar moieties change to C29-endo, followed by A- to

B-type changes in base-stacking interactions. Intermediate

forms involve A/B hybrid structures, with AT-rich tracts

assuming the B form, whereas the CG tracts are still A-like.

In the experimental case, the reduced water activity in the

solution was achieved through addition of TFE, whereas in

the computations, the cosolvent used was ethanol. Since

ethanol can precipitate DNA, TFE was used in solution ex-

periments. Although hydrogen-bonding properties of the two

solvents are different, the changes observed are mainly at-

tributed to a reduction in water activity. This conclusion is

supported by our analyses, which indicates that the MD and

UVRR results agree well on the issue of a sequential mech-

anism for the A-to-B transition in DNA and the detailed

nature of it at the molecular level. The UVRR and MD results

thus collectively support the idea of a cooperative but se-

quential mechanism for the B-to-A transition, as opposed to

an all-or-none, simple two-state mechanism.

In comparing experimentally observed and theoretically

calculated results, it is important to note that the experimen-

tal results report the A/B ratios for a series of equilibrium
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mixtures, whereas the MD simulation models a kinetic

pathway between the calculated solution structures of the A

and B forms. The features of the A-to-B transition indicated

by the UVRR spectroscopy and the MD simulations are

consistent with the diverse experimental results reviewed in

Background, which pertain to the general aspects of con-

formational stability. At a more detailed level, we have

compared the UVRR/MD sequential model of the transition

to the mechanism proposed on the basis of x-ray diffraction

of various derivatized intermediates (see Fig 9 for our MD-

calculated results). A comparison of the equilibrium model

from experiment and the kinetic model from MD in terms of

the order of events agrees well with the idea of a sequential

mechanism. Comparison with the crystal structure model

indicates that the results obtained on the crystalline solid

carry over to the solution state.

A new perspective on the A-to-B transition was indicated

by the observations that H-bonding to the dT C4¼O group is

stronger in the A form and the transition midpoint occurs at a

high molar hydration (87.5% MH) (Fig. 4; Table 2). The

increased H-bonding strength was attributed to greater sol-

vent interaction and MD simulations point to increased

localization of water and ions in the major groove in the A

form. These results and the accessible surface area analyses

support the idea that reorganization of the solvent is a major

determinant in the transition.

We turn now to a methodological issue relevant to MD

simulations on DNA. Many groups have independently

TABLE 3 Proximity analysis of A- and B-form DNA trajectories

Volume of first solvation shell* Coordination number Ækæy

Basepair position Basepair B DNA A DNA B DNA A DNA

3 CG

Sugar 315.3 335.9 1.6 1.2

Phosphate 321.8 301.3 9.5 4.7

Major groove 282.0 256.4 2.7 1.6

Minor groove 234.3 243.5 4.3 1.9

4 GC

Sugar 327.0 342.9 2.1 0.3

Phosphate 319.4 290.5 9.2 4.5

Major groove 275.0 242.8 2.7 1.4

Minor groove 229.6 276.0 3.7 1.1

5 AT

Sugar 307.7 345.2 1.6 0.2

Phosphate 308.7 276.1 9.0 3.4

Major groove 325.5 295.1 3.8 2.4

Minor groove 229.9 245.4 3.1 0.6

6 AT

Sugar 302.7 359.1 1.5 0.2

Phosphate 322.4 297.5 9.9 3.7

Major groove 321.5 269.3 4.2 2.3

Minor groove 225.8 258.4 3.1 1.3

7 TA

Sugar 299.0 340.4 1.5 0.4

Phosphate 326.1 287.6 9.4 4.2

Major groove 327.4 274.7 4.7 2.1

Minor groove 231.0 234.4 3.2 1.2

8 TA

Sugar 311.8 325.0 1.6 1.0

Phosphate 320.4 269.4 8.8 3.2

Major groove 335.5 268.8 3.6 1.6

Minor groove 236.6 255.6 3.0 1.5

9 CG

Sugar 321.3 334.3 2.5 0.7

Phosphate 328.2 299.3 9.6 3.5

Major groove 266.3 225.6 2.4 0.7

Minor groove 242.6 264.1 4.4 1.5

10 GC

Sugar 308.5 328.2 1.6 0.6

Phosphate 331.0 311.0 10.1 2.9

Major groove 292.2 231.0 3.0 0.5

Minor groove 235.4 254.9 4.5 0.8

*Volume of primary solvent shell (Å3) derived by the proximity method.
yNumber of water molecules in the primary proximity region.
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shown that MD simulations in water using the popular

AMBER parm94 force field equilibrate in a B-form-like

structure regardless of whether the simulation starts in an

A- or B-form structure (4,65). In an ethanol/water solvent

mixture of 30% relative MH, a simulation started from the

canonical A-form structure remains A-like (4,65). According

to conventional wisdom, a B-form structure in such a low-

water-activity state should transition to an A-like structure,

but in this case it was originally reported, and confirmed in

this study, that the MD structure remains B-like in this case.

This discrepancy has raised questions about the quality of the

force field, the length of the simulation, and the sequence

dependence of the transition (4,65). To pursue this issue, we

have extended our MD solvent analysis using a numerical

procedure to determine the average solvent positions, taking

into consideration the diffusional interchanges that would

occur as a result of solvent motion. These so-called generic

sites (84) represent the locations of the peaks in the 3D

density distribution of the solvent. Solvation sites computed

from the trajectories of A- and B-DNA structures in the 30%

MH mixture are shown in Fig. 7. The stable A-form structure

in the ethanol/water mixture shows a strong preference to

localize water and ions in the major groove, in accord with

our Raman spectroscopic results and the solute-solvent in-

teraction energy calculated using the proximity analysis.

However, the solvent analysis for the corresponding B-form

structure in the ethanol/water mixture indicates that the sol-

vent distribution in the groove region has not achieved lo-

calization of water and ions in the major groove equivalent to

that observed for the A-form structure.

FIGURE 7 Representation of generic solvent site analy-

sis (84) of the MD trajectories of A- and B-form

d(CGCGAATTCGCG)2 DNA in the ethanol/water mixture

with the water locations color-coded by fractional occu-

pancy. A gradient coloring scheme is employed for the

generic water positions, with the sites of high occupancy

(.0.9) shaded blue, those of low occupancy (;0.3) shaded

red, and those of intermediate occupancy shaded green. The

C, G, T, and A nucleotides are colored yellow, green, blue,

and red, respectively. Sodium ions are colored magenta.

The figures have been generated using the program PyMOL

(DeLano Scientific, Palo Alto, CA).
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To assess the importance of water structure in the major

groove of the DNA in facilitating the transition from B to A

structures, we constructed a simulation ‘‘experiment’’ in the

ethanol/water mixture that began with a small cluster of 30

water molecules restrained to the vicinity of major-groove

surface atoms of the B-form starting structure. The results of

this ‘‘computer experiment’’ are shown in Fig. 8. The XDP of

the 10 central nucleotide pairs in the dodecamer sequence

moves rapidly toward more negative values, which is indic-

ative of a transition toward A-like structures. Reversible

transitions of the sugar pseudorotation phase angle from the

C29-endo toward the C39-endo conformations is also observed,

indicating that the selective hydration of the major groove

does lead to an A-like sugar puckering. (Fig. S3 in Data S1).

We also observe that in this simulation of the CGCGA-

ATTCGCG sequence, the sugars attached to C and G bases

are more likely to be in the C39-endo state than are those at-

tached to the central A and T bases.

This result suggests that the problem with converting B to

A at reduced water activity, observed in MD simulations,

may be a matter of sampling rather than, as previously sus-

pected, a force field problem. The idea is that the B-to-A

transition evidently proceeds if the solvent is structured

properly in the major groove, but this is a highly improbable

event on the nanosecond timescale, and thus the transition is

not observed in the MD simulations. On the timescale of the

FIGURE 8 x-displacement of basepairs 2–11 in

the dodecamer sequence CGCGAATTCGCG. The

x-displacement of basepairs in B DNA simulated in

ethanol/water mixture is shown in green. The data

in red represent the x-displacement of B DNA in

ethanol/water mixture simulated with a cluster of

water molecules restrained in the major groove. The

blue and pink horizontal lines at 0 and �4 Å

correspond to the values of x-displacement in

canonical B- and A-form DNA structures.
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simulation, this is a quasiergodic problem. In time frames

from microseconds to seconds, even improbable events at the

nanosecond level can occur and nucleate the conformational

change, analogous to what happens in the observation of

particles undergoing Brownian motion. Although this is only

a leading idea, and not unequivocally demonstrated by the

analysis, our results do indicate that quasiergodic problems

deserve serious consideration in assessing future MD studies

of the B-to-A transition at reduced water activity.

The time actually required for the reorganization of the

solvent remains an open question. The measurements of Jose

and Porschke (29) suggest that the timescale of the A-to-B

transition is 10 ms and that a significant transition barrier

exists. The results presented here indicate that the barrier for

the transition lies in the organization of the solvent. Mazur

had concluded that occupation of ions in the major groove

was required for the transition (11); however, the results of

this study suggest that reorganization of water is equally

important in this transition. The ultrafast dynamic measure-

ments of Zewail and co-workers (85) demonstrate that sol-

vent reorganization can occur on a timescale of 20 ps.

However, these measurements were confined to a relatively

localized area, and a complete reorganization of solvent in the

major groove may require a longer timescale. Further studies

are needed to appropriately address this issue.

SUMMARY AND CONCLUSIONS

A combination of methodologies has been utilized to exam-

ine the A-to-B transition. The comparison of UVRR results

with information gleaned from MD simulations has proven

illuminating with respect to the nature and mechanism of the

DNA A-to-B transition. Of significance are the correlations

between UVRR, MD, and crystallography results, which all

point to a sequential mechanism for the A-to-B transition

(Fig. 9) (8). In addition, UVRR and MD results also reveal

that sugar conformation may not be the most reliable measure

of A-to-B DNA conformation, as suggested in earlier NMR

studies (6). Finally, these measurements highlight the sig-

nificance of water and ion positions in facilitating the A-to-B

transition.
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